fuliqi
2024-09-25 8febea78af8515def606491b3373c16db7d54941
ycl-server/src/main/java/com/ycl/platform/service/impl/DataCenterServiceImpl.java
@@ -1,17 +1,40 @@
package com.ycl.platform.service.impl;
import com.baomidou.mybatisplus.core.metadata.IPage;
import com.baomidou.mybatisplus.extension.conditions.query.LambdaQueryChainWrapper;
import com.github.pagehelper.Page;
import com.github.pagehelper.PageHelper;
import com.mongodb.client.AggregateIterable;
import com.mongodb.client.MongoCollection;
import com.mongodb.client.MongoDatabase;
import com.ycl.platform.domain.entity.*;
import com.ycl.platform.domain.query.DataCenterQuery;
import com.ycl.platform.domain.result.HK.*;
import com.ycl.platform.domain.result.UY.RecordMetaDSumResult;
import com.ycl.platform.domain.vo.TMonitorVO;
import com.ycl.platform.service.DataCenterService;
import com.ycl.platform.domain.result.UY.*;
import com.ycl.platform.domain.vo.PointDetailVO;
import com.ycl.platform.mapper.ImageResourceSecurityDetailMapper;
import com.ycl.platform.mapper.YwPointMapper;
import com.ycl.platform.service.*;
import com.ycl.system.Result;
import com.ycl.system.page.PageUtil;
import com.ycl.utils.DateUtils;
import com.ycl.utils.MongoUtil;
import constant.CheckConstants;
import lombok.RequiredArgsConstructor;
import org.apache.commons.collections.CollectionUtils;
import org.bson.Document;
import org.springframework.data.domain.Sort;
import org.springframework.data.mongodb.core.MongoTemplate;
import org.springframework.data.mongodb.core.query.Criteria;
import org.springframework.data.mongodb.core.query.Query;
import org.springframework.data.mongodb.core.query.TextCriteria;
import org.springframework.stereotype.Service;
import java.util.List;
import java.math.BigDecimal;
import java.math.RoundingMode;
import java.text.DecimalFormat;
import java.util.*;
import java.util.stream.Collectors;
/**
 * 数据中心接口
@@ -24,352 +47,1786 @@
public class DataCenterServiceImpl implements DataCenterService {
    private final MongoTemplate mongoTemplate;
    private final ImageResourceSecurityDetailMapper securityDetailMapper;
    private final YwPointMapper pointMapper;
    private final ICheckIndexVideoService checkIndexVideoService;
    private final ICheckIndexCarService checkIndexCarService;
    private final ICheckIndexFaceService checkIndexFaceService;
    private final static String TIME_FIELD = "mongoCreateTime";
    private static DecimalFormat DF = new DecimalFormat("#.####");
    /**
     * 视频:点位在线率
     *
     * @param query
     * @param params
     * @return
     */
    @Override
    public List<TMonitorVO> videoPointOnlineRate(DataCenterQuery query) {
    public Result videoPointOnlineRate(DataCenterQuery params) {
        params.setDeptTag(-1);
        params.setDeviceType(1);
        IPage<PointDetailVO> page = PageUtil.getPage(params, PointDetailVO.class);
        pointMapper.dataCenterPage(page, params);
        return null;
        // 统计设备数量
        Integer distinctCount = pointMapper.distinctCount(params);
        Date now = new Date();
        List<CheckIndexVideo> videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper())
                .select(CheckIndexVideo::getSiteOnline)
                .between(CheckIndexVideo::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexVideo::getSiteOnline).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", Arrays.asList(distinctCount + "",this.remove0(onlineRate)));
        map.put("list", page.getRecords());
        return Result.ok().data(map).total(page.getTotal());
    }
    /**
     * 视频:一机一档注册率
     * 视频:部级点位在线率
     *
     * @param query
     * @param params
     * @return
     */
    @Override
    public List<TMonitorVO> videoOneMachineDocumentRegister(DataCenterQuery query) {
        return null;
    }
    public Result deptVideoPointOnlineRate(DataCenterQuery params) {
        params.setDeptTag(1);
        params.setDeviceType(1);
        IPage<PointDetailVO> page = PageUtil.getPage(params, PointDetailVO.class);
        pointMapper.dataCenterPage(page, params);
    /**
     * 视频:一机一档合格率
     *
     * @param query
     * @return
     */
    @Override
    public List<TMonitorVO> videoOneMachineDocumentQualified(DataCenterQuery query) {
        return null;
    }
        // 统计设备数量
        Integer distinctCount = pointMapper.distinctCount(params);
    /**
     * 视频:档案考核比
     *
     * @param query
     * @return
     */
    @Override
    public List<TMonitorVO> videoAssessmentFileRatio(DataCenterQuery query) {
        return null;
    }
    /**
     * 视频:录像可用率
     *
     * @param query
     * @return
     */
    @Override
    public List<RecordMetaDSumResult> videoAvailabilityRate(DataCenterQuery query) {
        return null;
    }
    /**
     * 视频:重点点位录像可用率
     *
     * @param query
     * @return
     */
    @Override
    public List<RecordMetaDSumResult> videoImportantPointAvailabilityRate(DataCenterQuery query) {
        return null;
    }
    /**
     * 视频:标注正确率
     *
     * @param query
     * @return
     */
    // TODO 返回数据对象更换
    @Override
    public List<TMonitorVO> videoLabelingAccuracy(DataCenterQuery query) {
        return null;
    }
    /**
     * 视频:重点点位标注正确率
     *
     * @param query
     * @return
     */
    // TODO 返回数据对象更换
    @Override
    public List<TMonitorVO> videoImportantPointLabelingAccuracy(DataCenterQuery query) {
        return null;
    }
    /**
     * 视频:校时正确率
     *
     * @param query
     * @return
     */
    // TODO 返回数据对象更换
    @Override
    public List<TMonitorVO> videoCheckTimeAccuracy(DataCenterQuery query) {
        return null;
    }
    /**
     * 视频:重点点位校时正确率
     *
     * @param query
     * @return
     */
    // TODO 返回数据对象更换
    @Override
    public List<TMonitorVO> videoImportantPointCheckTimeAccuracy(DataCenterQuery query) {
        return null;
        Date now = new Date();
        List<CheckIndexVideo> videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper())
                .select(CheckIndexVideo::getMinistrySiteOnline)
                .eq(params.getDataType().equals(1), CheckIndexVideo::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexVideo::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexVideo::getMinistrySiteOnline).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", Arrays.asList(distinctCount + "", this.remove0(onlineRate)));
        map.put("list", page.getRecords());
        return Result.ok().data(map).total(page.getTotal());
    }
    /**
     * 视频:重点点位在线率
     *
     * @param query
     * @param params
     * @return
     */
    // TODO 返回数据对象更换
    @Override
    public List<TMonitorVO> videoImportantPointOnlineRate(DataCenterQuery query) {
        return null;
    public Result videoImportantPointOnlineRate(DataCenterQuery params) {
        params.setDeptTag(3);
        params.setDeviceType(1);
        IPage<PointDetailVO> page = PageUtil.getPage(params, PointDetailVO.class);
        pointMapper.dataCenterPage(page, params);
        // 统计设备数量
        Integer distinctCount = pointMapper.distinctCount(params);
        Date now = new Date();
        List<CheckIndexVideo> videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper())
                .select(CheckIndexVideo::getKeySiteOnline)
                .eq(params.getDataType().equals(1), CheckIndexVideo::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexVideo::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexVideo::getKeySiteOnline).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", Arrays.asList(distinctCount + "", this.remove0(onlineRate)));
        map.put("list", page.getRecords());
        return Result.ok().data(map).total(page.getTotal());
    }
    /**
     * 视频:重点指挥图像在线率
     *
     * @param query
     * @param params
     * @return
     */
    // TODO 返回数据对象更换
    @Override
    public List<TMonitorVO> videoImportantPointImageOnlineRate(DataCenterQuery query) {
        return null;
    public Result videoImportantPointImageOnlineRate(DataCenterQuery params) {
        params.setDeptTag(4);
        params.setDeviceType(1);
        IPage<PointDetailVO> page = PageUtil.getPage(params, PointDetailVO.class);
        pointMapper.dataCenterPage(page, params);
        // 统计设备数量
        Integer distinctCount = pointMapper.distinctCount(params);
        Date now = new Date();
        List<CheckIndexVideo> videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper())
                .select(CheckIndexVideo::getKeyCommandImageOnline)
                .eq(params.getDataType().equals(1), CheckIndexVideo::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexVideo::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexVideo::getKeyCommandImageOnline).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", Arrays.asList(distinctCount + "", this.remove0(onlineRate)));
        map.put("list", page.getRecords());
        return Result.ok().data(map).total(page.getTotal());
    }
    /**
     * 视频:一机一档注册率
     *
     * @param params
     * @return
     */
    @Override
    public Result videoOneMachineDocumentRegister(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("ip.showValue", "name.showValue", "serialNumber.showValue");
        Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null);
        long total = mongoTemplate.count(query, MonitorQualifyResult.class);
        MongoUtil.setPage(query, params, TIME_FIELD);
        List<MonitorQualifyResult> resultList = mongoTemplate.find(query, MonitorQualifyResult.class);
        // 统计数量
        MongoDatabase database = mongoTemplate.getDb();
        MongoCollection<Document> collection = database.getCollection("uy_monitor_qualify");
        List<Document> dList1 = new ArrayList<>(2);
        dList1.add(new Document("ip.error", new Document("$eq", Boolean.TRUE)));
        setTag(params,dList1);
        List<Document> dList2 = new ArrayList<>(2);
        dList2.add(new Document("macdz.error", new Document("$eq", Boolean.TRUE)));
        setTag(params,dList2);
        List<Document> dList3 = new ArrayList<>(2);
        dList3.add(new Document("latitude.error", new Document("$eq", Boolean.TRUE)));
        setTag(params,dList3);
        List<Document> dList4 = new ArrayList<>(2);
        dList4.add(new Document("longitude.error", new Document("$eq", Boolean.TRUE)));
        setTag(params,dList4);
        Document ipErrFilter = new Document("$and", dList1);
        Document macdzErrFilter = new Document("$and", dList2);
        Document latitudeErrFilter = new Document("$and", dList3);
        Document longitudeErrFilter = new Document("$and", dList4);
        List<Document> lists = Arrays.asList(ipErrFilter, macdzErrFilter, latitudeErrFilter, longitudeErrFilter);
        List<String> rList = lists.stream().map(filter -> {
            // 构建聚合管道
            List<Document> pipeline = Arrays.asList(
                    new Document("$match", filter),
                    // $group 去重
                    new Document("$group", new Document("_id", "$serialNumber.showValue")),
                    new Document("$count", "uniqueDeviceIds")
            );
            // 执行聚合查询并获取结果
            AggregateIterable<Document> result = collection.aggregate(pipeline);
            Integer uniqueDeviceIdCount = 0;
            for (Document doc : result) {
                uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds");
                break; // 不需要继续遍历,因为 $count 只会产生一个结果
            }
            return uniqueDeviceIdCount + "";
        }).collect(Collectors.toList());
        Date now = new Date();
        List<CheckIndexVideo> videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper())
                .select(CheckIndexVideo::getMonitorRegistration)
                .eq(params.getDataType().equals(1), CheckIndexVideo::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexVideo::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexVideo::getMonitorRegistration).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        rList.add(this.remove0(onlineRate));
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", rList);
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 视频:一机一档合格率
     *
     * @param params
     * @return
     */
    @Override
    public Result videoOneMachineDocumentQualified(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("ip.showValue", "name.showValue", "serialNumber.showValue");
        Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null);
        long total = mongoTemplate.count(query, MonitorQualifyResult.class);
        MongoUtil.setPage(query, params, TIME_FIELD);
        List<MonitorQualifyResult> resultList = mongoTemplate.find(query, MonitorQualifyResult.class);
        // 统计数量
        MongoDatabase database = mongoTemplate.getDb();
        MongoCollection<Document> collection = database.getCollection("uy_monitor_qualify");
        List<Document> dList1 = new ArrayList<>(2);
        dList1.add(new Document("ip.error", new Document("$eq", Boolean.TRUE)));
        setTag(params,dList1);
        List<Document> dList2 = new ArrayList<>(2);
        dList2.add(new Document("macdz.error", new Document("$eq", Boolean.TRUE)));
        setTag(params,dList2);
        List<Document> dList3 = new ArrayList<>(2);
        dList3.add(new Document("latitude.error", new Document("$eq", Boolean.TRUE)));
        setTag(params,dList3);
        List<Document> dList4 = new ArrayList<>(2);
        dList4.add(new Document("longitude.error", new Document("$eq", Boolean.TRUE)));
        setTag(params,dList4);
        Document ipErrFilter = new Document("$and", dList1);
        Document macdzErrFilter = new Document("$and", dList2);
        Document latitudeErrFilter = new Document("$and", dList3);
        Document longitudeErrFilter = new Document("$and", dList4);
        List<Document> lists = Arrays.asList(ipErrFilter, macdzErrFilter, latitudeErrFilter, longitudeErrFilter);
        List<String> rList = lists.stream().map(filter -> {
            // 构建聚合管道
            List<Document> pipeline = Arrays.asList(
                    new Document("$match", filter),
                    // $group 去重
                    new Document("$group", new Document("_id", "$serialNumber.showValue")),
                    new Document("$count", "uniqueDeviceIds")
            );
            // 执行聚合查询并获取结果
            AggregateIterable<Document> result = collection.aggregate(pipeline);
            Integer uniqueDeviceIdCount = 0;
            for (Document doc : result) {
                uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds");
                break; // 不需要继续遍历,因为 $count 只会产生一个结果
            }
            return uniqueDeviceIdCount + "";
        }).collect(Collectors.toList());
        Date now = new Date();
        List<CheckIndexVideo> videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper())
                .select(CheckIndexVideo::getMonitorQualification)
                .eq(params.getDataType().equals(1), CheckIndexVideo::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexVideo::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexVideo::getMonitorQualification).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        rList.add(this.remove0(onlineRate));
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", rList);
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 视频:档案考核比
     *
     * @param params
     * @return
     */
    @Override
    public Result videoAssessmentFileRatio(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("ip.showValue", "name.showValue", "serialNumber.showValue");
        Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null);
        long total = mongoTemplate.count(query, MonitorQualifyResult.class);
        MongoUtil.setPage(query, params, TIME_FIELD);
        List<MonitorQualifyResult> resultList = mongoTemplate.find(query, MonitorQualifyResult.class);
        // 统计数量
        MongoDatabase database = mongoTemplate.getDb();
        MongoCollection<Document> collection = database.getCollection("uy_monitor_qualify");
        List<Document> dList1 = new ArrayList<>(2);
        dList1.add(new Document("ip.error", new Document("$eq", Boolean.TRUE)));
        setTag(params,dList1);
        List<Document> dList2 = new ArrayList<>(2);
        dList2.add(new Document("macdz.error", new Document("$eq", Boolean.TRUE)));
        setTag(params,dList2);
        List<Document> dList3 = new ArrayList<>(2);
        dList3.add(new Document("latitude.error", new Document("$eq", Boolean.TRUE)));
        setTag(params,dList3);
        List<Document> dList4 = new ArrayList<>(2);
        dList4.add(new Document("longitude.error", new Document("$eq", Boolean.TRUE)));
        setTag(params,dList4);
        Document ipErrFilter = new Document("$and", dList1);
        Document macdzErrFilter = new Document("$and", dList2);
        Document latitudeErrFilter = new Document("$and", dList3);
        Document longitudeErrFilter = new Document("$and", dList4);
        List<Document> lists = Arrays.asList(ipErrFilter, macdzErrFilter, latitudeErrFilter, longitudeErrFilter);
        List<String> rList = lists.stream().map(filter -> {
            // 构建聚合管道
            List<Document> pipeline = Arrays.asList(
                    new Document("$match", filter),
                    // $group 去重
                    new Document("$group", new Document("_id", "$serialNumber.showValue")),
                    new Document("$count", "uniqueDeviceIds")
            );
            // 执行聚合查询并获取结果
            AggregateIterable<Document> result = collection.aggregate(pipeline);
            Integer uniqueDeviceIdCount = 0;
            for (Document doc : result) {
                uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds");
                break; // 不需要继续遍历,因为 $count 只会产生一个结果
            }
            return uniqueDeviceIdCount + "";
        }).collect(Collectors.toList());
        rList.add("0%");
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", rList);
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 视频:录像可用率
     *
     * @param params
     * @return
     */
    @Override
    public Result videoAvailabilityRate(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("deviceId", "deviceName");
        Query query = MongoUtil.getQuery(params,"createTime", likeFileds, null);
        long total = mongoTemplate.count(query, RecordMetaDSumResult.class);
        MongoUtil.setPage(query, params, "createTime");
        List<RecordMetaDSumResult> resultList = mongoTemplate.find(query, RecordMetaDSumResult.class);
        // 统计数量
        MongoDatabase database = mongoTemplate.getDb();
        MongoCollection<Document> collection = database.getCollection("uy_record_meta_d_sum");
        List<Integer> status = Arrays.asList(1, 0, -1);
        List<String> resultCount = status.stream().map(item -> {
            List<Document> dList = new ArrayList<>(2);
            dList.add(new Document("recordStatus", new Document("$eq", item)));
            setTag(params, dList);
            Document filter = new Document("$and", dList);
            // 构建聚合管道
            List<Document> pipeline = Arrays.asList(
                    new Document("$match", filter),
                    // $group 去重
                    new Document("$group", new Document("_id", "$deviceId")),
                    new Document("$count", "uniqueDeviceIds")
            );
            // 执行聚合查询并获取结果
            AggregateIterable<Document> result = collection.aggregate(pipeline);
            Integer uniqueDeviceIdCount = 0;
            for (Document doc : result) {
                uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds");
                break; // 不需要继续遍历,因为 $count 只会产生一个结果
            }
            return uniqueDeviceIdCount + "";
        }).collect(Collectors.toList());
        Date now = new Date();
        List<CheckIndexVideo> videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper())
                .select(CheckIndexVideo::getVideoAvailable)
                .eq(params.getDataType().equals(1), CheckIndexVideo::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexVideo::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexVideo::getVideoAvailable).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        resultCount.add(this.remove0(onlineRate));
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", resultCount);
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 视频:部级录像可用率
     *
     * @param params
     * @return
     */
    @Override
    public Result deptVideoAvailabilityRate(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("deviceId", "deviceName");
        Query query = MongoUtil.getQuery(params,"createTime", likeFileds, 1);
        long total = mongoTemplate.count(query, RecordMetaDSumResult.class);
        MongoUtil.setPage(query, params, "createTime");
        List<RecordMetaDSumResult> resultList = mongoTemplate.find(query, RecordMetaDSumResult.class);
        // 统计数量
        MongoDatabase database = mongoTemplate.getDb();
        MongoCollection<Document> collection = database.getCollection("uy_record_meta_d_sum");
        List<Integer> status = Arrays.asList(1, 0, -1);
        List<String> resultCount = status.stream().map(item -> {
            List<Document> dList = new ArrayList<>(4);
            dList.add(new Document("deptTag", new Document("$eq", Boolean.TRUE)));
            dList.add(new Document("recordStatus",  new Document("$eq", item)));
            setTag(params,dList);
            Document filter = new Document("$and", dList);
            // 构建聚合管道
            List<Document> pipeline = Arrays.asList(
                    new Document("$match", filter),
                    // $group 去重
                    new Document("$group", new Document("_id", "$deviceId")),
                    new Document("$count", "uniqueDeviceIds")
            );
            // 执行聚合查询并获取结果
            AggregateIterable<Document> result = collection.aggregate(pipeline);
            Integer uniqueDeviceIdCount = 0;
            for (Document doc : result) {
                uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds");
                break; // 不需要继续遍历,因为 $count 只会产生一个结果
            }
            return uniqueDeviceIdCount + "";
        }).collect(Collectors.toList());
        Date now = new Date();
        List<CheckIndexVideo> videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper())
                .select(CheckIndexVideo::getMinistryVideoAvailable)
                .eq(params.getDataType().equals(1), CheckIndexVideo::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexVideo::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexVideo::getMinistryVideoAvailable).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        resultCount.add(this.remove0(onlineRate));
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", resultCount);
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 视频:重点点位录像可用率
     *
     * @param params
     * @return
     */
    @Override
    public Result videoImportantPointAvailabilityRate(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("deviceId", "deviceName");
        Query query = MongoUtil.getQuery(params,"createTime", likeFileds, 3);
        long total = mongoTemplate.count(query, RecordMetaDSumResult.class);
        MongoUtil.setPage(query, params, "createTime");
        List<RecordMetaDSumResult> resultList = mongoTemplate.find(query, RecordMetaDSumResult.class);
        // 统计数量
        MongoDatabase database = mongoTemplate.getDb();
        MongoCollection<Document> collection = database.getCollection("uy_record_meta_d_sum");
        List<Integer> status = Arrays.asList(1, 0, -1);
        List<String> resultCount = status.stream().map(item -> {
            List<Document> dList = new ArrayList<>(4);
            dList.add(new Document("importantTag", new Document("$eq", Boolean.TRUE)));
            dList.add(new Document("recordStatus", new Document("$eq", item)));
            setTag(params,dList);
            Document filter = new Document("$and", dList);
            // 构建聚合管道
            List<Document> pipeline = Arrays.asList(
                    new Document("$match", filter),
                    // $group 去重
                    new Document("$group", new Document("_id", "$deviceId")),
                    new Document("$count", "uniqueDeviceIds")
            );
            // 执行聚合查询并获取结果
            AggregateIterable<Document> result = collection.aggregate(pipeline);
            Integer uniqueDeviceIdCount = 0;
            for (Document doc : result) {
                uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds");
                break; // 不需要继续遍历,因为 $count 只会产生一个结果
            }
            return uniqueDeviceIdCount + "";
        }).collect(Collectors.toList());
        Date now = new Date();
        List<CheckIndexVideo> videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper())
                .select(CheckIndexVideo::getKeyVideoAvailable)
                .eq(params.getDataType().equals(1), CheckIndexVideo::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexVideo::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexVideo::getKeyVideoAvailable).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        resultCount.add(this.remove0(onlineRate));
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", resultCount);
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 视频:标注正确率
     *
     * @param params
     * @return
     */
    @Override
    public Result videoLabelingAccuracy(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("deviceId", "deviceName");
        Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null);
        long total = mongoTemplate.count(query, RecordMetaDSumResult.class);
        List<RecordMetaDSumResult> resultList = mongoTemplate.find(query, RecordMetaDSumResult.class);
        // 统计数
        long nonNetwork = mongoTemplate.count(new Query().addCriteria(Criteria.where("LWSX").is("0")), RecordMetaDSumResult.class);
        long network = mongoTemplate.count(new Query().addCriteria(Criteria.where("LWSX").is("1")), RecordMetaDSumResult.class);
        long video = mongoTemplate.count(new Query().addCriteria(Criteria.where("SXJGNLX").regex(".*1.*")), RecordMetaDSumResult.class);
        long car = mongoTemplate.count(new Query().addCriteria(Criteria.where("SXJGNLX").regex(".*2.*")), RecordMetaDSumResult.class);
        long face = mongoTemplate.count(new Query().addCriteria(Criteria.where("SXJGNLX").regex(".*3.*")), RecordMetaDSumResult.class);
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", Arrays.asList(nonNetwork, network, video, car, face));
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 视频:重点点位标注正确率
     *
     * @param params
     * @return
     */
    @Override
    public Result videoImportantPointLabelingAccuracy(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("deviceNo", "osdName");
        Query query = MongoUtil.getQuery(params,"checkTime", likeFileds, 3);
        long total = mongoTemplate.count(query, OsdCheckResult.class);
        MongoUtil.setPage(query, params, "checkTime");
        List<OsdCheckResult> resultList = mongoTemplate.find(query, OsdCheckResult.class);
        // 统计数量
        MongoDatabase database = mongoTemplate.getDb();
        MongoCollection<Document> collection = database.getCollection("osd_check_result");
        List<Document> dList1 = new ArrayList<>(2);
        dList1.add(new Document("importantTag", Boolean.TRUE));
        dList1.add(new Document("osdNameCorrect", new Document("$eq", 1)));
        setTag(params,dList1);
        List<Document> dList2 = new ArrayList<>(2);
        dList2.add(new Document("importantTag", Boolean.TRUE));
        dList2.add(new Document("osdNameCorrect", new Document("$eq", -1)));
        setTag(params,dList2);
        List<Document> dList3 = new ArrayList<>(2);
        dList3.add(new Document("importantTag", Boolean.TRUE));
        dList3.add(new Document("osdTimeCorrect", new Document("$eq", 1)));
        setTag(params,dList3);
        List<Document> dList4 = new ArrayList<>(2);
        dList4.add(new Document("importantTag", Boolean.TRUE));
        dList4.add(new Document("osdTimeCorrect", new Document("$eq", -1)));
        setTag(params,dList4);
        Document osdNameFilter = new Document("$and", dList1);
        Document osdNameErrFilter = new Document("$and", dList2);
        Document osdTimeFilter = new Document("$and", dList3);
        Document osdTimeErrFilter = new Document("$and", dList4);
        List<Document> lists = Arrays.asList(osdNameFilter, osdNameErrFilter, osdTimeFilter, osdTimeErrFilter);
        List<String> rList = lists.stream().map(filter -> {
            // 构建聚合管道
            List<Document> pipeline = Arrays.asList(
                    new Document("$match", filter),
                    // $group 去重
                    new Document("$group", new Document("_id", "$deviceNo")),
                    new Document("$count", "uniqueDeviceIds")
            );
            // 执行聚合查询并获取结果
            AggregateIterable<Document> result = collection.aggregate(pipeline);
            Integer uniqueDeviceIdCount = 0;
            for (Document doc : result) {
                uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds");
                break; // 不需要继续遍历,因为 $count 只会产生一个结果
            }
            return uniqueDeviceIdCount + "";
        }).collect(Collectors.toList());
        Date now = new Date();
        List<CheckIndexVideo> videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper())
                .select(CheckIndexVideo::getKeyAnnotationAccuracy)
                .eq(params.getDataType().equals(1), CheckIndexVideo::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexVideo::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexVideo::getKeyAnnotationAccuracy).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        rList.add(this.remove0(onlineRate));
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", rList);
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 视频:校时正确率
     *
     * @param params
     * @return
     */
    @Override
    public Result videoCheckTimeAccuracy(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("deviceId");
        Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null);
        long total = mongoTemplate.count(query, OneMachineFileResult.class);
        List<OneMachineFileResult> resultList = mongoTemplate.find(query, OneMachineFileResult.class);
        // 统计数
        long nonNetwork = mongoTemplate.count(new Query().addCriteria(Criteria.where("LWSX").is("0")), OneMachineFileResult.class);
        long network = mongoTemplate.count(new Query().addCriteria(Criteria.where("LWSX").is("1")), OneMachineFileResult.class);
        long video = mongoTemplate.count(new Query().addCriteria(Criteria.where("SXJGNLX").regex(".*1.*")), OneMachineFileResult.class);
        long car = mongoTemplate.count(new Query().addCriteria(Criteria.where("SXJGNLX").regex(".*2.*")), OneMachineFileResult.class);
        long face = mongoTemplate.count(new Query().addCriteria(Criteria.where("SXJGNLX").regex(".*3.*")), OneMachineFileResult.class);
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", Arrays.asList(nonNetwork, network, video, car, face));
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 视频:重点点位校时正确率
     *
     * @param params
     * @return
     */
    @Override
    public Result videoImportantPointCheckTimeAccuracy(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("deviceNo", "osdName");
        Query query = MongoUtil.getQuery(params,"checkTime", likeFileds, 3);
        long total = mongoTemplate.count(query, OsdCheckResult.class);
        MongoUtil.setPage(query, params, "checkTime");
        List<OsdCheckResult> resultList = mongoTemplate.find(query, OsdCheckResult.class);
        // 统计数量
        MongoDatabase database = mongoTemplate.getDb();
        MongoCollection<Document> collection = database.getCollection("osd_check_result");
        List<Document> dList1 = new ArrayList<>(2);
        dList1.add(new Document("importantTag", Boolean.TRUE));
        dList1.add(new Document("osdTimeCorrect", new Document("$eq", 1)));
        setTag(params,dList1);
        List<Document> dList2 = new ArrayList<>(2);
        dList2.add(new Document("importantTag", Boolean.TRUE));
        dList2.add(new Document("osdTimeCorrect", new Document("$eq", -1)));
        setTag(params,dList2);
        Document osdTimeFilter = new Document("$and", dList1);
        Document osdTimeErrFilter = new Document("$and", dList2);
        List<Document> lists = Arrays.asList(osdTimeFilter, osdTimeErrFilter);
        List<String> rList = lists.stream().map(filter -> {
            // 构建聚合管道
            List<Document> pipeline = Arrays.asList(
                    new Document("$match", filter),
                    // $group 去重
                    new Document("$group", new Document("_id", "$deviceNo")),
                    new Document("$count", "uniqueDeviceIds")
            );
            // 执行聚合查询并获取结果
            AggregateIterable<Document> result = collection.aggregate(pipeline);
            Integer uniqueDeviceIdCount = 0;
            for (Document doc : result) {
                uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds");
                break; // 不需要继续遍历,因为 $count 只会产生一个结果
            }
            return uniqueDeviceIdCount + "";
        }).collect(Collectors.toList());
        Date now = new Date();
        List<CheckIndexVideo> videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper())
                .select(CheckIndexVideo::getKeyTimingAccuracy)
                .eq(params.getDataType().equals(1), CheckIndexVideo::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexVideo::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexVideo::getKeyTimingAccuracy).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        rList.add(this.remove0(onlineRate));
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", rList);
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 车辆:视图库对接稳定性
     *
     * @param query
     * @param params
     * @return
     */
    @Override
    public List<SnapshotDataMonitorResult> vehicleViewDockStable(DataCenterQuery query) {
        //
        Criteria criteria = new Criteria().andOperator(
                Criteria.where("name").is("xp"),
                Criteria.where("age").lte(50)
        );
        List<SnapshotDataMonitorResult> ts = mongoTemplate.find(Query.query(criteria), SnapshotDataMonitorResult.class);
    public Result vehicleViewDockStable(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("externalIndexCode", "deviceName");
        Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null);
        return null;
        long total = mongoTemplate.count(query, SnapshotDataMonitorResult.class);
        MongoUtil.setPage(query, params, TIME_FIELD);
        List<SnapshotDataMonitorResult> resultList = mongoTemplate.find(query, SnapshotDataMonitorResult.class);
        // 统计数量
        MongoDatabase database = mongoTemplate.getDb();
        MongoCollection<Document> collection = database.getCollection("hk_snapshot_data_monitor");
        List<Document> dList1 = new ArrayList<>(2);
        dList1.add(new Document("importantTag", Boolean.TRUE));
        dList1.add(new Document("resultType", new Document("$eq", 1)));
        setTag(params,dList1);
        List<Document> dList2 = new ArrayList<>(2);
        dList2.add(new Document("importantTag", Boolean.TRUE));
        dList2.add(new Document("resultType", new Document("$eq", 2)));
        setTag(params,dList2);
        List<Document> dList3 = new ArrayList<>(2);
        dList3.add(new Document("importantTag", Boolean.TRUE));
        dList3.add(new Document("resultType", new Document("$eq", 3)));
        setTag(params,dList3);
        List<Document> dList4 = new ArrayList<>(2);
        dList4.add(new Document("importantTag", Boolean.TRUE));
        dList4.add(new Document("resultType", new Document("$eq", 4)));
        setTag(params,dList4);
        Document normalFilter = new Document("$and", dList1);
        Document noDataFilter = new Document("$and", dList2);
        Document trFilter = new Document("$and", dList3);
        Document littleFilter = new Document("$and", dList4);
        List<Document> lists = Arrays.asList(normalFilter, noDataFilter, trFilter, littleFilter);
        List<String> rList = lists.stream().map(filter -> {
            // 构建聚合管道
            List<Document> pipeline = Arrays.asList(
                    new Document("$match", filter),
                    // $group 去重
                    new Document("$group", new Document("_id", "$externalIndexCode")),
                    new Document("$count", "uniqueDeviceIds")
            );
            // 执行聚合查询并获取结果
            AggregateIterable<Document> result = collection.aggregate(pipeline);
            Integer uniqueDeviceIdCount = 0;
            for (Document doc : result) {
                uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds");
                break; // 不需要继续遍历,因为 $count 只会产生一个结果
            }
            return uniqueDeviceIdCount + "";
        }).collect(Collectors.toList());
        Date now = new Date();
        List<CheckIndexCar> videoList = new LambdaQueryChainWrapper<>(checkIndexCarService.getBaseMapper())
                .select(CheckIndexCar::getViewConnectStability)
                .eq(params.getDataType().equals(1), CheckIndexCar::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexCar::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexCar::getViewConnectStability).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        rList.add(this.remove0(onlineRate));
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", rList);
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 车辆:点位在线率
     *
     * @param query
     * @param params
     * @return
     */
    @Override
    public List<SnapshotDataMonitorResult> vehiclePointOnlineRate(DataCenterQuery query) {
        return null;
    public Result vehiclePointOnlineRate(DataCenterQuery params) {
        params.setDeptTag(-1);
        params.setDeviceType(2);
        IPage<PointDetailVO> page = PageUtil.getPage(params, PointDetailVO.class);
        pointMapper.dataCenterPage(page, params);
        // 统计设备数量
        Integer distinctCount = pointMapper.distinctCount(params);
        Date now = new Date();
        List<CheckIndexCar> videoList = new LambdaQueryChainWrapper<>(checkIndexCarService.getBaseMapper())
                .select(CheckIndexCar::getSiteOnline)
                .eq(params.getDataType().equals(1), CheckIndexCar::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexCar::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexCar::getSiteOnline).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", Arrays.asList(distinctCount + "", this.remove0(onlineRate)));
        map.put("list", page.getRecords());
        return Result.ok().data(map).total(page.getTotal());
    }
    /**
     * 车辆:互联网卡口设备目录一致性
     *
     * @param query
     * @param params
     * @return
     */
    @Override
    public List<TMonitorVO> vehicleNetDeviceDirectoryConsistency(DataCenterQuery query) {
        return null;
    public Result vehicleNetDeviceDirectoryConsistency(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("ip.showValue", "name.showValue", "serialNumber.showValue");
        Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null);
        long total = mongoTemplate.count(query, MonitorQualifyResult.class);
        MongoUtil.setPage(query, params, TIME_FIELD);
        List<MonitorQualifyResult> resultList = mongoTemplate.find(query, MonitorQualifyResult.class);
        // 统计数量
        MongoDatabase database = mongoTemplate.getDb();
        MongoCollection<Document> collection = database.getCollection("uy_monitor_qualify");
        List<Document> dList1 = new ArrayList<>(2);
        dList1.add(new Document("ip.error", new Document("$eq", Boolean.TRUE)));
        setTag(params,dList1);
        List<Document> dList2 = new ArrayList<>(2);
        dList2.add(new Document("macdz.error", new Document("$eq", Boolean.TRUE)));
        setTag(params,dList2);
        List<Document> dList3 = new ArrayList<>(2);
        dList3.add(new Document("latitude.error", new Document("$eq", Boolean.TRUE)));
        setTag(params,dList3);
        List<Document> dList4 = new ArrayList<>(2);
        dList4.add(new Document("longitude.error", new Document("$eq", Boolean.TRUE)));
        setTag(params,dList4);
        Document ipErrFilter = new Document("$and", dList1);
        Document macdzErrFilter = new Document("$and", dList2);
        Document latitudeErrFilter = new Document("$and", dList3);
        Document longitudeErrFilter = new Document("$and", dList4);
        List<Document> lists = Arrays.asList(ipErrFilter, macdzErrFilter, latitudeErrFilter, longitudeErrFilter);
        List<String> rList = lists.stream().map(filter -> {
            // 构建聚合管道
            List<Document> pipeline = Arrays.asList(
                    new Document("$match", filter),
                    // $group 去重
                    new Document("$group", new Document("_id", "$serialNumber.showValue")),
                    new Document("$count", "uniqueDeviceIds")
            );
            // 执行聚合查询并获取结果
            AggregateIterable<Document> result = collection.aggregate(pipeline);
            Integer uniqueDeviceIdCount = 0;
            for (Document doc : result) {
                uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds");
                break; // 不需要继续遍历,因为 $count 只会产生一个结果
            }
            return uniqueDeviceIdCount + "";
        }).collect(Collectors.toList());
        Date now = new Date();
        List<CheckIndexCar> videoList = new LambdaQueryChainWrapper<>(checkIndexCarService.getBaseMapper())
                .select(CheckIndexCar::getDeviceDirectoryConsistent)
                .eq(params.getDataType().equals(1), CheckIndexCar::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexCar::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexCar::getDeviceDirectoryConsistent).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        rList.add(this.remove0(onlineRate));
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", rList);
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 车辆:车辆卡口信息采集准确率
     *
     * @param query
     * @param params
     * @return
     */
    @Override
    public List<CrossDetailResult> vehicleCollectionConsistency(DataCenterQuery query) {
        return null;
    public Result vehicleCollectionConsistency(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("externalIndexCode", "crossName");
        Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null);
        long total = mongoTemplate.count(query, CrossDetailResult.class);
        MongoUtil.setPage(query, params, TIME_FIELD);
        List<CrossDetailResult> resultList = mongoTemplate.find(query, CrossDetailResult.class);
        // 统计数量
        MongoDatabase database = mongoTemplate.getDb();
        MongoCollection<Document> collection = database.getCollection("hk_cross_detail");
        List<Document> dList1 = new ArrayList<>(2);
        dList1.add(new Document("lalType", new Document("$eq", 1)));
        setTag(params,dList1);
        List<Document> dList2 = new ArrayList<>(2);
        dList2.add(new Document("lalType", new Document("$eq", 2)));
        setTag(params,dList2);
        List<Document> dList3 = new ArrayList<>(2);
        dList3.add(new Document("lalType", new Document("$eq", 3)));
        setTag(params,dList3);
        List<Document> dList4 = new ArrayList<>(2);
        dList4.add(new Document("lalType", new Document("$eq", 4)));
        setTag(params,dList4);
        Document ipErrFilter = new Document("$and", dList1);
        Document macdzErrFilter = new Document("$and", dList2);
        Document latitudeErrFilter = new Document("$and", dList3);
        Document longitudeErrFilter = new Document("$and", dList4);
        List<Document> lists = Arrays.asList(ipErrFilter, macdzErrFilter, latitudeErrFilter, longitudeErrFilter);
        List<String> rList = lists.stream().map(filter -> {
            // 构建聚合管道
            List<Document> pipeline = Arrays.asList(
                    new Document("$match", filter),
                    // $group 去重
                    new Document("$group", new Document("_id", "$externalIndexCode")),
                    new Document("$count", "uniqueDeviceIds")
            );
            // 执行聚合查询并获取结果
            AggregateIterable<Document> result = collection.aggregate(pipeline);
            Integer uniqueDeviceIdCount = 0;
            for (Document doc : result) {
                uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds");
                break; // 不需要继续遍历,因为 $count 只会产生一个结果
            }
            return uniqueDeviceIdCount + "";
        }).collect(Collectors.toList());
        Date now = new Date();
        List<CheckIndexCar> videoList = new LambdaQueryChainWrapper<>(checkIndexCarService.getBaseMapper())
                .select(CheckIndexCar::getVehicleInformationCollectionAccuracy)
                .eq(params.getDataType().equals(1), CheckIndexCar::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexCar::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexCar::getVehicleInformationCollectionAccuracy).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        rList.add(this.remove0(onlineRate));
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", rList);
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 车辆:车辆卡口设备抓拍数据完整性
     *
     * @param query
     * @param params
     * @return
     */
    @Override
    public List<DataIntegrityMonitoringResult> vehicleCollectionDataIntegrity(DataCenterQuery query) {
        return null;
    public Result vehicleCollectionDataIntegrity(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("externalIndexCode", "deviceName");
        Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null);
        long total = mongoTemplate.count(query, DataIntegrityMonitoringResult.class);
        MongoUtil.setPage(query, params, TIME_FIELD);
        List<DataIntegrityMonitoringResult> resultList = mongoTemplate.find(query, DataIntegrityMonitoringResult.class);
        // 统计数量
        MongoDatabase database = mongoTemplate.getDb();
        MongoCollection<Document> collection = database.getCollection("hk_data_integrity_monitoring");
        Date now = new Date();
        List<CheckIndexCar> videoList = new LambdaQueryChainWrapper<>(checkIndexCarService.getBaseMapper())
                .select(CheckIndexCar::getVehicleCaptureIntegrity)
                .eq(params.getDataType().equals(1), CheckIndexCar::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexCar::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexCar::getVehicleCaptureIntegrity).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", Arrays.asList(this.remove0(onlineRate)));
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 车辆:车辆卡口设备抓拍数据准确性
     *
     * @param query
     * @param params
     * @return
     */
    @Override
    public List<AttrRecognitionMonitorResult> vehicleCollectionDataCaptured(DataCenterQuery query) {
        return null;
    public Result vehicleCollectionDataCaptured(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("externalIndexCode", "deviceName");
        Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null);
        long total = mongoTemplate.count(query, AttrRecognitionMonitorResult.class);
        MongoUtil.setPage(query, params, TIME_FIELD);
        List<AttrRecognitionMonitorResult> resultList = mongoTemplate.find(query, AttrRecognitionMonitorResult.class);
        Date now = new Date();
        List<CheckIndexCar> videoList = new LambdaQueryChainWrapper<>(checkIndexCarService.getBaseMapper())
                .select(CheckIndexCar::getVehicleCaptureAccuracy)
                .eq(params.getDataType().equals(1), CheckIndexCar::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexCar::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexCar::getVehicleCaptureAccuracy).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", Arrays.asList(this.remove0(onlineRate)));
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 车辆:车辆卡口设备时钟准确性
     *
     * @param query
     * @param params
     * @return
     */
    @Override
    public List<VehicleDeviceInspectionResult> vehicleClockAccuracy(DataCenterQuery query) {
        return null;
    public Result vehicleClockAccuracy(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("externalIndexCode", "deviceName");
        Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null);
        long total = mongoTemplate.count(query, VehicleDeviceInspectionResult.class);
        MongoUtil.setPage(query, params, TIME_FIELD);
        List<VehicleDeviceInspectionResult> resultList = mongoTemplate.find(query, VehicleDeviceInspectionResult.class);
        // 统计数量
        MongoDatabase database = mongoTemplate.getDb();
        MongoCollection<Document> collection = database.getCollection("hk_vehicle_device_inspection");
        List<Document> dList1 = new ArrayList<>(2);
        dList1.add(new Document("snapResult", new Document("$eq", 1)));
        setTag(params,dList1);
        List<Document> dList2 = new ArrayList<>(2);
        dList2.add(new Document("snapResult", new Document("$eq", 2)));
        setTag(params,dList2);
        List<Document> dList3 = new ArrayList<>(2);
        dList3.add(new Document("snapResult", new Document("$eq", 4)));
        setTag(params,dList3);
        Document ipErrFilter = new Document("$and", dList1);
        Document macdzErrFilter = new Document("$and", dList2);
        Document longitudeErrFilter = new Document("$and", dList3);
        List<Document> lists = Arrays.asList(ipErrFilter, macdzErrFilter, longitudeErrFilter);
        List<String> rList = lists.stream().map(filter -> {
            // 构建聚合管道
            List<Document> pipeline = Arrays.asList(
                    new Document("$match", filter),
                    // $group 去重
                    new Document("$group", new Document("_id", "$externalIndexCode")),
                    new Document("$count", "uniqueDeviceIds")
            );
            // 执行聚合查询并获取结果
            AggregateIterable<Document> result = collection.aggregate(pipeline);
            Integer uniqueDeviceIdCount = 0;
            for (Document doc : result) {
                uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds");
                break; // 不需要继续遍历,因为 $count 只会产生一个结果
            }
            return uniqueDeviceIdCount + "";
        }).collect(Collectors.toList());
        Date now = new Date();
        List<CheckIndexCar> videoList = new LambdaQueryChainWrapper<>(checkIndexCarService.getBaseMapper())
                .select(CheckIndexCar::getVehicleTimingAccuracy)
                .eq(params.getDataType().equals(1), CheckIndexCar::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexCar::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexCar::getVehicleTimingAccuracy).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        rList.add(this.remove0(onlineRate));
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", rList);
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 车辆:车辆卡口设备抓拍数据上传及时性
     *
     * @param query
     * @param params
     * @return
     */
    @Override
    public List<SnapshotDelayMonitorResult> vehicleTimelyUploadAccuracy(DataCenterQuery query) {
        return null;
    public Result vehicleTimelyUploadAccuracy(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("externalIndexCode", "deviceName");
        Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null);
        long total = mongoTemplate.count(query, SnapshotDelayMonitorResult.class);
        MongoUtil.setPage(query, params, TIME_FIELD);
        List<SnapshotDelayMonitorResult> resultList = mongoTemplate.find(query, SnapshotDelayMonitorResult.class);
        // 统计数
        Date now = new Date();
        List<CheckIndexCar> videoList = new LambdaQueryChainWrapper<>(checkIndexCarService.getBaseMapper())
                .select(CheckIndexCar::getVehicleUploadTimeliness)
                .eq(params.getDataType().equals(1), CheckIndexCar::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexCar::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexCar::getVehicleUploadTimeliness).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", Arrays.asList(this.remove0(onlineRate)));
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 车辆:车辆卡口设备url可用性
     *
     * @param query
     * @param params
     * @return
     */
    @Override
    public List<PicAccessResult> vehicleUrlAccuracy(DataCenterQuery query) {
        return null;
    public Result vehicleUrlAccuracy(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("externalIndexCode", "deviceName");
        Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null);
        long total = mongoTemplate.count(query, PicAccessResult.class);
        MongoUtil.setPage(query, params, TIME_FIELD);
        List<PicAccessResult> resultList = mongoTemplate.find(query, PicAccessResult.class);
        // 统计数
        Date now = new Date();
        List<CheckIndexCar> videoList = new LambdaQueryChainWrapper<>(checkIndexCarService.getBaseMapper())
                .select(CheckIndexCar::getVehicleUrlAvailability)
                .eq(params.getDataType().equals(1), CheckIndexCar::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexCar::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexCar::getVehicleUrlAvailability).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", Arrays.asList(this.remove0(onlineRate)));
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 车辆:车辆卡口设备抓拍数据大图可用性
     *
     * @param query
     * @param params
     * @return
     */
    @Override
    public List<VehicleDeviceSamplingResult> vehicleBigImgAccuracy(DataCenterQuery query) {
        return null;
    public Result vehicleBigImgAccuracy(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("externalIndexCode", "deviceName");
        Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null);
        long total = mongoTemplate.count(query, VehicleDeviceSamplingResult.class);
        MongoUtil.setPage(query, params, TIME_FIELD);
        List<VehicleDeviceSamplingResult> resultList = mongoTemplate.find(query, VehicleDeviceSamplingResult.class);
        // 统计数
        Date now = new Date();
        List<CheckIndexCar> videoList = new LambdaQueryChainWrapper<>(checkIndexCarService.getBaseMapper())
                .select(CheckIndexCar::getVehiclePictureAvailability)
                .eq(params.getDataType().equals(1), CheckIndexCar::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexCar::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexCar::getVehiclePictureAvailability).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", Arrays.asList(this.remove0(onlineRate)));
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 人脸:视图库对接稳定性
     *
     * @param query
     * @param params
     * @return
     */
    @Override
    public List<SnapshotDataMonitorResult> faceViewDockStable(DataCenterQuery query) {
        return null;
    public Result faceViewDockStable(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("externalIndexCode", "deviceName");
        Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null);
        long total = mongoTemplate.count(query, SnapshotDataMonitorResult.class);
        MongoUtil.setPage(query, params, TIME_FIELD);
        List<SnapshotDataMonitorResult> resultList = mongoTemplate.find(query, SnapshotDataMonitorResult.class);
        // 统计数量
        MongoDatabase database = mongoTemplate.getDb();
        MongoCollection<Document> collection = database.getCollection("hk_snapshot_data_monitor");
        List<Document> dList1 = new ArrayList<>(2);
        dList1.add(new Document("resultType", new Document("$eq", 1)));
        setTag(params,dList1);
        List<Document> dList2 = new ArrayList<>(2);
        dList2.add(new Document("resultType", new Document("$eq", 2)));
        setTag(params,dList2);
        List<Document> dList3 = new ArrayList<>(2);
        dList3.add(new Document("resultType", new Document("$eq", 3)));
        setTag(params,dList3);
        List<Document> dList4 = new ArrayList<>(2);
        dList4.add(new Document("resultType", new Document("$eq", 4)));
        setTag(params,dList4);
        Document normalFilter = new Document("$and", dList1);
        Document noDataFilter = new Document("$and", dList2);
        Document trFilter = new Document("$and", dList3);
        Document littleFilter = new Document("$and", dList4);
        List<Document> lists = Arrays.asList(normalFilter, noDataFilter, trFilter, littleFilter);
        List<String> rList = lists.stream().map(filter -> {
            // 构建聚合管道
            List<Document> pipeline = Arrays.asList(
                    new Document("$match", filter),
                    // $group 去重
                    new Document("$group", new Document("_id", "$externalIndexCode")),
                    new Document("$count", "uniqueDeviceIds")
            );
            // 执行聚合查询并获取结果
            AggregateIterable<Document> result = collection.aggregate(pipeline);
            Integer uniqueDeviceIdCount = 0;
            for (Document doc : result) {
                uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds");
                break; // 不需要继续遍历,因为 $count 只会产生一个结果
            }
            return uniqueDeviceIdCount + "";
        }).collect(Collectors.toList());
        Date now = new Date();
        List<CheckIndexFace> videoList = new LambdaQueryChainWrapper<>(checkIndexFaceService.getBaseMapper())
                .select(CheckIndexFace::getViewConnectStability)
                .eq(params.getDataType().equals(1), CheckIndexFace::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexFace::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexFace::getViewConnectStability).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        rList.add(this.remove0(onlineRate));
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", rList);
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 人脸:点位在线率
     *
     * @param query
     * @param params
     * @return
     */
    // TODO 更换响应结果
    @Override
    public List<TMonitorVO> facePointOnlineRate(DataCenterQuery query) {
        return null;
    public Result facePointOnlineRate(DataCenterQuery params) {
        params.setDeptTag(-1);
        params.setDeviceType(3);
        IPage<PointDetailVO> page = PageUtil.getPage(params, PointDetailVO.class);
        pointMapper.dataCenterPage(page, params);
        // 统计设备数量
        Integer distinctCount = pointMapper.distinctCount(params);
        Date now = new Date();
        List<CheckIndexFace> videoList = new LambdaQueryChainWrapper<>(checkIndexFaceService.getBaseMapper())
                .select(CheckIndexFace::getSiteOnline)
                .eq(params.getDataType().equals(1), CheckIndexFace::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexFace::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexFace::getSiteOnline).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        List<String> rList = new ArrayList<>(2);
        rList.add(distinctCount + "");
        rList.add(this.remove0(onlineRate));
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", rList);
        map.put("list", page.getRecords());
        return Result.ok().data(map).total(page.getTotal());
    }
    /**
     * 人脸:目录一致率
     *
     * @param query
     * @param params
     * @return
     */
    @Override
    public List<TMonitorVO> faceDirectoryConsistency(DataCenterQuery query) {
        return null;
    public Result faceDirectoryConsistency(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("serialNumber.showValue", "ip.showValue", "name.showValue");
        Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null);
        long total = mongoTemplate.count(query, MonitorQualifyResult.class);
        MongoUtil.setPage(query, params, TIME_FIELD);
        List<MonitorQualifyResult> resultList = mongoTemplate.find(query, MonitorQualifyResult.class);
        // 统计数量
        MongoDatabase database = mongoTemplate.getDb();
        MongoCollection<Document> collection = database.getCollection("uy_monitor_qualify");
        List<Document> dList1 = new ArrayList<>(2);
        dList1.add(new Document("ip.error", new Document("$eq", Boolean.TRUE)));
        setTag(params,dList1);
        List<Document> dList2 = new ArrayList<>(2);
        dList2.add(new Document("macdz.error", new Document("$eq", Boolean.TRUE)));
        setTag(params,dList2);
        List<Document> dList3 = new ArrayList<>(2);
        dList3.add(new Document("latitude.error", new Document("$eq", Boolean.TRUE)));
        setTag(params,dList3);
        List<Document> dList4 = new ArrayList<>(2);
        dList4.add(new Document("longitude.error", new Document("$eq", Boolean.TRUE)));
        setTag(params,dList4);
        Document ipErrFilter = new Document("$and", dList1);
        Document macdzErrFilter = new Document("$and", dList2);
        Document latitudeErrFilter = new Document("$and", dList3);
        Document longitudeErrFilter = new Document("$and", dList4);
        List<Document> lists = Arrays.asList(ipErrFilter, macdzErrFilter, latitudeErrFilter, longitudeErrFilter);
        List<String> rList = lists.stream().map(filter -> {
            // 构建聚合管道
            List<Document> pipeline = Arrays.asList(
                    new Document("$match", filter),
                    // $group 去重
                    new Document("$group", new Document("_id", "$serialNumber.showValue")),
                    new Document("$count", "uniqueDeviceIds")
            );
            // 执行聚合查询并获取结果
            AggregateIterable<Document> result = collection.aggregate(pipeline);
            Integer uniqueDeviceIdCount = 0;
            for (Document doc : result) {
                uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds");
                break; // 不需要继续遍历,因为 $count 只会产生一个结果
            }
            return uniqueDeviceIdCount + "";
        }).collect(Collectors.toList());
        Date now = new Date();
        List<CheckIndexFace> videoList = new LambdaQueryChainWrapper<>(checkIndexFaceService.getBaseMapper())
                .select(CheckIndexFace::getDeviceDirectoryConsistent)
                .eq(params.getDataType().equals(1), CheckIndexFace::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexFace::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexFace::getDeviceDirectoryConsistent).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        rList.add(this.remove0(onlineRate));
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", rList);
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 人脸:人脸卡口信息采集准确率
     *
     * @param query
     * @param params
     * @return
     */
    @Override
    public List<CrossDetailResult> faceCollectionConsistency(DataCenterQuery query) {
        return null;
    public Result faceCollectionConsistency(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("externalIndexCode", "crossName");
        Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null);
        long total = mongoTemplate.count(query, CrossDetailResult.class);
        MongoUtil.setPage(query, params, TIME_FIELD);
        List<CrossDetailResult> resultList = mongoTemplate.find(query, CrossDetailResult.class);
        // 统计数量
        MongoDatabase database = mongoTemplate.getDb();
        MongoCollection<Document> collection = database.getCollection("hk_cross_detail");
        List<Document> dList1 = new ArrayList<>(2);
        dList1.add(new Document("lalType", new Document("$eq", 1)));
        setTag(params,dList1);
        List<Document> dList2 = new ArrayList<>(2);
        dList2.add(new Document("lalType", new Document("$eq", 2)));
        setTag(params,dList2);
        List<Document> dList3 = new ArrayList<>(2);
        dList3.add(new Document("lalType", new Document("$eq", 3)));
        setTag(params,dList3);
        List<Document> dList4 = new ArrayList<>(2);
        dList4.add(new Document("lalType", new Document("$eq", 4)));
        setTag(params,dList4);
        Document ipErrFilter = new Document("$and", dList1);
        Document macdzErrFilter = new Document("$and", dList2);
        Document latitudeErrFilter = new Document("$and", dList3);
        Document longitudeErrFilter = new Document("$and", dList4);
        List<Document> lists = Arrays.asList(ipErrFilter, macdzErrFilter, latitudeErrFilter, longitudeErrFilter);
        List<String> rList = lists.stream().map(filter -> {
            // 构建聚合管道
            List<Document> pipeline = Arrays.asList(
                    new Document("$match", filter),
                    // $group 去重
                    new Document("$group", new Document("_id", "$externalIndexCode")),
                    new Document("$count", "uniqueDeviceIds")
            );
            // 执行聚合查询并获取结果
            AggregateIterable<Document> result = collection.aggregate(pipeline);
            Integer uniqueDeviceIdCount = 0;
            for (Document doc : result) {
                uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds");
                break; // 不需要继续遍历,因为 $count 只会产生一个结果
            }
            return uniqueDeviceIdCount + "";
        }).collect(Collectors.toList());
        Date now = new Date();
        List<CheckIndexFace> videoList = new LambdaQueryChainWrapper<>(checkIndexFaceService.getBaseMapper())
                .select(CheckIndexFace::getFaceInformationCollectionAccuracy)
                .eq(params.getDataType().equals(1), CheckIndexFace::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexFace::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexFace::getFaceInformationCollectionAccuracy).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        rList.add(this.remove0(onlineRate));
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", rList);
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 人脸:设备抓拍图片合格性
     *
     * @param query
     * @param params
     * @return
     */
    @Override
    public List<MonitoringDetailResult> faceImgQualification(DataCenterQuery query) {
        return null;
    public Result faceImgQualification(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("externalIndexCode", "cameraName");
        Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null);
        long total = mongoTemplate.count(query, MonitoringDetailResult.class);
        MongoUtil.setPage(query, params, TIME_FIELD);
        List<MonitoringDetailResult> resultList = mongoTemplate.find(query, MonitoringDetailResult.class);
        // 统计数量
        MongoDatabase database = mongoTemplate.getDb();
        MongoCollection<Document> collection = database.getCollection("hk_monitoring_detail");
        List<Document> dList1 = new ArrayList<>(2);
        dList1.add(new Document("lalType", new Document("$eq", 1)));
        setTag(params,dList1);
        List<Document> dList2 = new ArrayList<>(2);
        dList2.add(new Document("lalType", new Document("$eq", 2)));
        setTag(params,dList2);
        List<Document> dList3 = new ArrayList<>(2);
        dList3.add(new Document("lalType", new Document("$eq", 3)));
        setTag(params,dList3);
        List<Document> dList4 = new ArrayList<>(2);
        dList4.add(new Document("lalType", new Document("$eq", 4)));
        setTag(params,dList4);
        Document ipErrFilter = new Document("$and", dList1);
        Document macdzErrFilter = new Document("$and", dList2);
        Document latitudeErrFilter = new Document("$and", dList3);
        Document longitudeErrFilter = new Document("$and", dList4);
        List<Document> lists = Arrays.asList(ipErrFilter, macdzErrFilter, latitudeErrFilter, longitudeErrFilter);
        List<String> rList = lists.stream().map(filter -> {
            // 构建聚合管道
            List<Document> pipeline = Arrays.asList(
                    new Document("$match", filter),
                    // $group 去重
                    new Document("$group", new Document("_id", "$externalIndexCode")),
                    new Document("$count", "uniqueDeviceIds")
            );
            // 执行聚合查询并获取结果
            AggregateIterable<Document> result = collection.aggregate(pipeline);
            Integer uniqueDeviceIdCount = 0;
            for (Document doc : result) {
                uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds");
                break; // 不需要继续遍历,因为 $count 只会产生一个结果
            }
            return uniqueDeviceIdCount + "";
        }).collect(Collectors.toList());
        Date now = new Date();
        List<CheckIndexFace> videoList = new LambdaQueryChainWrapper<>(checkIndexFaceService.getBaseMapper())
                .select(CheckIndexFace::getFacePictureQualification)
                .eq(params.getDataType().equals(1), CheckIndexFace::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexFace::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexFace::getFacePictureQualification).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        rList.add(this.remove0(onlineRate));
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", rList);
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 人脸:设备抓拍图片时钟准确性
     *
     * @param query
     * @param params
     * @return
     */
    @Override
    public List<FaceDeviceInspectionResult> faceCapturesImagesAccuracy(DataCenterQuery query) {
        return null;
    public Result faceCapturesImagesAccuracy(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("externalIndexCode", "deviceName");
        Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null);
        long total = mongoTemplate.count(query, FaceDeviceInspectionResult.class);
        MongoUtil.setPage(query, params, TIME_FIELD);
        List<FaceDeviceInspectionResult> resultList = mongoTemplate.find(query, FaceDeviceInspectionResult.class);
        // 统计数量
        MongoDatabase database = mongoTemplate.getDb();
        MongoCollection<Document> collection = database.getCollection("hk_vehicle_device_inspection");
        List<Document> dList1 = new ArrayList<>(2);
        dList1.add(new Document("snapResult", new Document("$eq", 1)));
        setTag(params,dList1);
        List<Document> dList2 = new ArrayList<>(2);
        dList2.add(new Document("snapResult", new Document("$eq", 2)));
        setTag(params,dList2);
        List<Document> dList3 = new ArrayList<>(2);
        dList3.add(new Document("snapResult", new Document("$eq", 4)));
        setTag(params,dList3);
        Document ipErrFilter = new Document("$and", dList1);
        Document macdzErrFilter = new Document("$and", dList2);
        Document longitudeErrFilter = new Document("$and", dList3);
        List<Document> lists = Arrays.asList(ipErrFilter, macdzErrFilter, longitudeErrFilter);
        List<String> rList = lists.stream().map(filter -> {
            // 构建聚合管道
            List<Document> pipeline = Arrays.asList(
                    new Document("$match", filter),
                    // $group 去重
                    new Document("$group", new Document("_id", "$externalIndexCode")),
                    new Document("$count", "uniqueDeviceIds")
            );
            // 执行聚合查询并获取结果
            AggregateIterable<Document> result = collection.aggregate(pipeline);
            Integer uniqueDeviceIdCount = 0;
            for (Document doc : result) {
                uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds");
                break; // 不需要继续遍历,因为 $count 只会产生一个结果
            }
            return uniqueDeviceIdCount + "";
        }).collect(Collectors.toList());
        Date now = new Date();
        List<CheckIndexFace> videoList = new LambdaQueryChainWrapper<>(checkIndexFaceService.getBaseMapper())
                .select(CheckIndexFace::getFaceTimingAccuracy)
                .eq(params.getDataType().equals(1), CheckIndexFace::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexFace::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexFace::getFaceTimingAccuracy).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        rList.add(this.remove0(onlineRate));
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", rList);
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 人脸:抓拍人脸数据上传及时性
     *
     * @param query
     * @param params
     * @return
     */
    @Override
    public List<FaceDeviceInspectionResult> faceTimelyUpload(DataCenterQuery query) {
        return null;
    public Result faceTimelyUpload(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("externalIndexCode", "deviceName");
        Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null);
        long total = mongoTemplate.count(query, FaceDeviceInspectionResult.class);
        MongoUtil.setPage(query, params, TIME_FIELD);
        List<FaceDeviceInspectionResult> resultList = mongoTemplate.find(query, FaceDeviceInspectionResult.class);
        // 统计数量
        MongoDatabase database = mongoTemplate.getDb();
        MongoCollection<Document> collection = database.getCollection("hk_vehicle_device_inspection");
        List<Document> dList1 = new ArrayList<>(2);
        dList1.add(new Document("snapResult", new Document("$eq", 1)));
        setTag(params,dList1);
        List<Document> dList2 = new ArrayList<>(2);
        dList2.add(new Document("snapResult", new Document("$eq", 2)));
        setTag(params,dList2);
        List<Document> dList3 = new ArrayList<>(2);
        dList3.add(new Document("snapResult", new Document("$eq", 4)));
        setTag(params,dList3);
        Document ipErrFilter = new Document("$and", dList1);
        Document macdzErrFilter = new Document("$and", dList2);
        Document longitudeErrFilter = new Document("$and", dList3);
        List<Document> lists = Arrays.asList(ipErrFilter, macdzErrFilter, longitudeErrFilter);
        List<String> rList = lists.stream().map(filter -> {
            // 构建聚合管道
            List<Document> pipeline = Arrays.asList(
                    new Document("$match", filter),
                    // $group 去重
                    new Document("$group", new Document("_id", "$externalIndexCode")),
                    new Document("$count", "uniqueDeviceIds")
            );
            // 执行聚合查询并获取结果
            AggregateIterable<Document> result = collection.aggregate(pipeline);
            Integer uniqueDeviceIdCount = 0;
            for (Document doc : result) {
                uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds");
                break; // 不需要继续遍历,因为 $count 只会产生一个结果
            }
            return uniqueDeviceIdCount + "";
        }).collect(Collectors.toList());
        Date now = new Date();
        List<CheckIndexFace> videoList = new LambdaQueryChainWrapper<>(checkIndexFaceService.getBaseMapper())
                .select(CheckIndexFace::getFaceUploadTimeliness)
                .eq(params.getDataType().equals(1), CheckIndexFace::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexFace::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexFace::getFaceUploadTimeliness).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        rList.add(this.remove0(onlineRate));
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", rList);
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 人脸:人脸卡口设备抓拍数据大图可用性
     *
     * @param params
     * @return
     */
    @Override
    public Result faceAvailabilityOfLargeImg(DataCenterQuery params) {
        List<String> likeFileds = Arrays.asList("externalIndexCode", "deviceName");
        Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null);
        long total = mongoTemplate.count(query, FaceDeviceSamplingResult.class);
        MongoUtil.setPage(query, params, TIME_FIELD);
        List<FaceDeviceSamplingResult> resultList = mongoTemplate.find(query, FaceDeviceSamplingResult.class);
        // 统计数
        Date now = new Date();
        List<CheckIndexFace> videoList = new LambdaQueryChainWrapper<>(checkIndexFaceService.getBaseMapper())
                .select(CheckIndexFace::getFacePictureAvailability)
                .eq(params.getDataType().equals(1), CheckIndexFace::getExamineTag, CheckConstants.Examine_Tag_Province)
                .between(CheckIndexFace::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now))
                .list();
        BigDecimal onlineRate = BigDecimal.ZERO;
        if (CollectionUtils.isNotEmpty(videoList)) {
            BigDecimal sum = videoList.stream().map(CheckIndexFace::getFacePictureAvailability).reduce(BigDecimal.ZERO, BigDecimal::add);
            BigDecimal count = BigDecimal.valueOf(videoList.size());
            onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100));
        }
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", Arrays.asList(this.remove0(onlineRate)));
        map.put("list", resultList);
        return Result.ok().data(map).total(total);
    }
    /**
     * 视频:视频图像资源安全管理
     *
     * @param query
     * @return
     */
    @Override
    public List<FaceDeviceSamplingResult> faceAvailabilityOfLargeImg(DataCenterQuery query) {
        return null;
    public Result videoImageResourceSecurity(DataCenterQuery query) {
        Page<ImageResourceSecurityDetail> page = PageHelper.startPage(query.getPageNum(), query.getPageSize());
        securityDetailMapper.selectImageResourceSecurityDetailList(query);
        // 统计数
        HashMap<String, Object> map = new HashMap<>();
        map.put("count", CollectionUtils.EMPTY_COLLECTION);
        map.put("list", page);
        return Result.ok().data(map).total(page.getTotal());
    }
    /**
     * 删除尾部的0
     * @param rate
     * @return
     */
    private String remove0(BigDecimal rate) {
        DF.setDecimalSeparatorAlwaysShown(false);
        return DF.format(rate) + "%";
    }
    /**
     * 设置标签搜索条件
     * @param params
     * @param dList
     */
    private void setTag(DataCenterQuery params, List<Document> dList) {
        if (params.getDataType().equals(1)) {
            dList.add(new Document("provinceTag", new Document("$eq", Boolean.TRUE)));
        } else if (params.getDataType().equals(2)) {
            dList.add(new Document("deptTag", new Document("$eq", Boolean.TRUE)));
        }
    }
}