| | |
| | | import com.ycl.platform.mapper.YwPointMapper; |
| | | import com.ycl.platform.service.*; |
| | | import com.ycl.system.Result; |
| | | import com.ycl.system.service.ISysConfigService; |
| | | import com.ycl.utils.DateUtils; |
| | | import com.ycl.utils.MongoUtil; |
| | | import com.ycl.utils.StringUtils; |
| | |
| | | return Result.ok().data(map).total(total); |
| | | } |
| | | |
| | | private final ISysConfigService configService; |
| | | /** |
| | | * 视频:录像可用率 |
| | | * |
| | |
| | | @Override |
| | | |
| | | public Result videoAvailabilityRate(DataCenterQuery params) { |
| | | //获取系统参数 |
| | | String dictLabel = configService.selectConfigByKey("recording_min_time"); |
| | | |
| | | double recordingMinTime; |
| | | try { |
| | | recordingMinTime = Double.parseDouble(dictLabel) / 60; // 如果 dictLabel 是以小时为单位,则无需除以 60 |
| | | } catch (Exception e) { |
| | | log.error("配置的删除时间范围格式不正确: {}", dictLabel, e); |
| | | recordingMinTime = 12.0; // 默认 12 小时(以小时为单位) |
| | | } |
| | | |
| | | List<String> likeFileds = Arrays.asList("deviceId", "deviceName"); |
| | | Query query = MongoUtil.getQuery(params, "createTime", likeFileds, null); |
| | | //下拉框录像情况查询条件 |
| | |
| | | } |
| | | return uniqueDeviceIdCount + ""; |
| | | }).collect(Collectors.toList()); |
| | | |
| | | //计算录像可用率 |
| | | MongoDatabase databaes2 = mongoTemplate.getDb(); |
| | | MongoCollection<Document> collection2 = databaes2.getCollection("uy_record_meta_d_sum"); |
| | | |
| | | double finalRecordingMinTime = recordingMinTime; |
| | | |
| | | List<Document> documentList = new ArrayList<>(3); |
| | | setTag(params, documentList); |
| | | Document recording = new Document("recordDuration",new Document("$gte", finalRecordingMinTime)); |
| | | documentList.add(recording); |
| | | Document filter = new Document("$and", documentList); |
| | | // 构建聚合管道 |
| | | List<Document> pipeline = Arrays.asList( |
| | | new Document("$match", filter), |
| | | // $group 去重 |
| | | new Document("$group", new Document("_id", "$deviceId")), |
| | | new Document("$count", "uniqueDeviceIds") |
| | | ); |
| | | AggregateIterable<Document> result = collection2.aggregate(pipeline); |
| | | Integer uniqueDeviceIdCount = 0; |
| | | for (Document doc : result) { |
| | | uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds"); |
| | | break; // 不需要继续遍历,因为 $count 只会产生一个结果 |
| | | } |
| | | log.error("打印:{}",uniqueDeviceIdCount); |
| | | // List<CheckIndexVideo> videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper()) |
| | | // .select(CheckIndexVideo::getVideoAvailable) |
| | | // .eq(params.getDataType().equals(1), CheckIndexVideo::getExamineTag, CheckConstants.Examine_Tag_Province) |
| | |
| | | // 1:完整 0:间歇 -1:异常 | |
| | | if (!StringUtils.isEmpty(resultCount.get(0)) && !"0".equals(resultCount.get(0))) { |
| | | //resultCount.get(0) |
| | | onlineRate = new BigDecimal(resultCount.get(1)).divide(new BigDecimal(resultCount.get(0)), 3,RoundingMode.DOWN).multiply(new BigDecimal("100")); |
| | | onlineRate = new BigDecimal(resultCount.get(1)).divide(new BigDecimal(uniqueDeviceIdCount), 3,RoundingMode.DOWN).multiply(new BigDecimal("100")); |
| | | } |
| | | resultCount.add(this.remove0(onlineRate)); |
| | | |
| | | HashMap<String, Object> map = new HashMap<>(); |
| | | log.error("resultCount:{}",resultCount.get(3)); |
| | | map.put("count", resultCount); |
| | | map.put("list", resultList); |
| | | return Result.ok().data(map).total(total); |