package com.ycl.platform.service.impl; import com.baomidou.mybatisplus.core.metadata.IPage; import com.baomidou.mybatisplus.extension.conditions.query.LambdaQueryChainWrapper; import com.github.pagehelper.Page; import com.github.pagehelper.PageHelper; import com.mongodb.client.AggregateIterable; import com.mongodb.client.MongoCollection; import com.mongodb.client.MongoDatabase; import com.ycl.platform.domain.entity.*; import com.ycl.platform.domain.query.DataCenterQuery; import com.ycl.platform.domain.result.HK.*; import com.ycl.platform.domain.result.SYS.TMonitorResult; import com.ycl.platform.domain.result.UY.*; import com.ycl.platform.domain.vo.PointDetailVO; import com.ycl.platform.mapper.ImageResourceSecurityDetailMapper; import com.ycl.platform.mapper.YwPointMapper; import com.ycl.platform.service.*; import com.ycl.system.Result; import com.ycl.system.page.PageUtil; import com.ycl.utils.DateUtils; import com.ycl.utils.MongoUtil; import constant.CheckConstants; import lombok.RequiredArgsConstructor; import org.apache.commons.collections.CollectionUtils; import org.bson.Document; import org.springframework.data.domain.Sort; import org.springframework.data.mongodb.core.MongoTemplate; import org.springframework.data.mongodb.core.query.Criteria; import org.springframework.data.mongodb.core.query.Query; import org.springframework.data.mongodb.core.query.TextCriteria; import org.springframework.stereotype.Service; import java.math.BigDecimal; import java.math.RoundingMode; import java.text.DecimalFormat; import java.util.*; import java.util.stream.Collectors; /** * 数据中心接口 * * @author:xp * @date:2024/8/2 11:07 */ @Service @RequiredArgsConstructor public class DataCenterServiceImpl implements DataCenterService { private final MongoTemplate mongoTemplate; private final ImageResourceSecurityDetailMapper securityDetailMapper; private final YwPointMapper pointMapper; private final ICheckIndexVideoService checkIndexVideoService; private final ICheckIndexCarService checkIndexCarService; private final ICheckIndexFaceService checkIndexFaceService; private final static String TIME_FIELD = "mongoCreateTime"; private static DecimalFormat DF = new DecimalFormat("#.####"); /** * 视频:点位在线率 * * @param params * @return */ @Override public Result videoPointOnlineRate(DataCenterQuery params) { List likeFileds = Arrays.asList("name", "no", "ip"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); System.out.println("查询条件"+query.toString()); //分页数量 long total = mongoTemplate.count(query, TMonitorResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, TMonitorResult.class); resultList.forEach(item -> { if (null != item.getPingOnline() && item.getPingOnline()) { item.setPingOnlineStr("在线"); } else { item.setPingOnlineStr("离线"); } if(1== item.getOnline() ){ item.setOnlineStr("在线"); }else if(-1==item.getOnline()){ item.setOnlineStr("离线"); }else { item.setOnlineStr("未知"); } }); params.setDeptTag(-1); params.setDeviceType(1); // 统计设备数量 Integer distinctCount = pointMapper.distinctCount(params); List videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper()) .select(CheckIndexVideo::getSiteOnline) .between(CheckIndexVideo::getCreateTime, params.getStartTime(), params.getEndTime()) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexVideo::getSiteOnline).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } HashMap map = new HashMap<>(); map.put("count", Arrays.asList(distinctCount + "", this.remove0(onlineRate))); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 视频:部级点位在线率 * * @param params * @return */ @Override public Result deptVideoPointOnlineRate(DataCenterQuery params) { List likeFileds = Arrays.asList("name", "no", "ip"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); //分页数量 long total = mongoTemplate.count(query, TMonitorResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, TMonitorResult.class); resultList.forEach(item -> { if (null != item.getPingOnline() && item.getPingOnline()) { item.setPingOnlineStr("在线"); } else { item.setPingOnlineStr("离线"); } if (1 == item.getOnline()) { item.setOnlineStr("在线"); } else if (-1 == item.getOnline()) { item.setOnlineStr("离线"); } else { item.setOnlineStr("未知"); } }); // 统计设备数量 params.setDeptTag(1); params.setDeviceType(1); Integer distinctCount = pointMapper.distinctCount(params); List videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper()) .select(CheckIndexVideo::getMinistrySiteOnline) .eq(params.getDataType().equals(1), CheckIndexVideo::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexVideo::getCreateTime, params.getStartTime(), params.getEndTime()) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexVideo::getMinistrySiteOnline).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } HashMap map = new HashMap<>(); map.put("count", Arrays.asList(distinctCount + "", this.remove0(onlineRate))); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 视频:重点点位在线率 * * @param params * @return */ @Override public Result videoImportantPointOnlineRate(DataCenterQuery params) { List likeFileds = Arrays.asList("name", "no", "ip"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); //分页数量 long total = mongoTemplate.count(query, TMonitorResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, TMonitorResult.class); params.setDeptTag(3); params.setDeviceType(1); // 统计设备数量 Integer distinctCount = pointMapper.distinctCount(params); resultList.forEach(item -> { if (null != item.getPingOnline() && item.getPingOnline()) { item.setPingOnlineStr("在线"); } else { item.setPingOnlineStr("离线"); } if (1 == item.getOnline()) { item.setOnlineStr("在线"); } else if (-1 == item.getOnline()) { item.setOnlineStr("离线"); } else { item.setOnlineStr("未知"); } }); Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper()) .select(CheckIndexVideo::getKeySiteOnline) .eq(params.getDataType().equals(1), CheckIndexVideo::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexVideo::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexVideo::getKeySiteOnline).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } HashMap map = new HashMap<>(); map.put("count", Arrays.asList(distinctCount + "", this.remove0(onlineRate))); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 视频:重点指挥图像在线率 * * @param params * @return */ @Override public Result videoImportantPointImageOnlineRate(DataCenterQuery params) { List likeFileds = Arrays.asList("name", "no", "ip"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); //分页数量 long total = mongoTemplate.count(query, TMonitorResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, TMonitorResult.class); params.setDeptTag(4); params.setDeviceType(1); // 统计设备数量 Integer distinctCount = pointMapper.distinctCount(params); resultList.forEach(item -> { if (null != item.getPingOnline() && item.getPingOnline()) { item.setPingOnlineStr("在线"); } else { item.setPingOnlineStr("离线"); } if (1 == item.getOnline()) { item.setOnlineStr("在线"); } else if (-1 == item.getOnline()) { item.setOnlineStr("离线"); } else { item.setOnlineStr("未知"); } }); Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper()) .select(CheckIndexVideo::getKeyCommandImageOnline) .eq(params.getDataType().equals(1), CheckIndexVideo::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexVideo::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexVideo::getKeyCommandImageOnline).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } HashMap map = new HashMap<>(); map.put("count", Arrays.asList(distinctCount + "", this.remove0(onlineRate))); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 视频:一机一档注册率 * * @param params * @return */ @Override public Result videoOneMachineDocumentRegister(DataCenterQuery params) { List likeFileds = Arrays.asList("ip.showValue", "name.showValue", "serialNumber.showValue"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); long total = mongoTemplate.count(query, MonitorQualifyResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, MonitorQualifyResult.class); // 统计数量 MongoDatabase database = mongoTemplate.getDb(); MongoCollection collection = database.getCollection("uy_monitor_qualify"); List dList1 = new ArrayList<>(2); dList1.add(new Document("ip.error", new Document("$eq", Boolean.TRUE))); setTag(params, dList1); List dList2 = new ArrayList<>(2); dList2.add(new Document("macdz.error", new Document("$eq", Boolean.TRUE))); setTag(params, dList2); List dList3 = new ArrayList<>(2); dList3.add(new Document("latitude.error", new Document("$eq", Boolean.TRUE))); setTag(params, dList3); List dList4 = new ArrayList<>(2); dList4.add(new Document("longitude.error", new Document("$eq", Boolean.TRUE))); setTag(params, dList4); Document ipErrFilter = new Document("$and", dList1); Document macdzErrFilter = new Document("$and", dList2); Document latitudeErrFilter = new Document("$and", dList3); Document longitudeErrFilter = new Document("$and", dList4); List lists = Arrays.asList(ipErrFilter, macdzErrFilter, latitudeErrFilter, longitudeErrFilter); List rList = lists.stream().map(filter -> { // 构建聚合管道 List pipeline = Arrays.asList( new Document("$match", filter), // $group 去重 new Document("$group", new Document("_id", "$serialNumber.showValue")), new Document("$count", "uniqueDeviceIds") ); // 执行聚合查询并获取结果 AggregateIterable result = collection.aggregate(pipeline); Integer uniqueDeviceIdCount = 0; for (Document doc : result) { uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds"); break; // 不需要继续遍历,因为 $count 只会产生一个结果 } return uniqueDeviceIdCount + ""; }).collect(Collectors.toList()); Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper()) .select(CheckIndexVideo::getMonitorRegistration) .eq(params.getDataType().equals(1), CheckIndexVideo::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexVideo::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexVideo::getMonitorRegistration).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } rList.add(this.remove0(onlineRate)); HashMap map = new HashMap<>(); map.put("count", rList); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 视频:一机一档合格率 * * @param params * @return */ @Override public Result videoOneMachineDocumentQualified(DataCenterQuery params) { List likeFileds = Arrays.asList("ip.showValue", "name.showValue", "serialNumber.showValue"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); long total = mongoTemplate.count(query, MonitorQualifyResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, MonitorQualifyResult.class); // 统计数量 MongoDatabase database = mongoTemplate.getDb(); MongoCollection collection = database.getCollection("uy_monitor_qualify"); List dList1 = new ArrayList<>(2); dList1.add(new Document("ip.error", new Document("$eq", Boolean.TRUE))); setTag(params, dList1); List dList2 = new ArrayList<>(2); dList2.add(new Document("macdz.error", new Document("$eq", Boolean.TRUE))); setTag(params, dList2); List dList3 = new ArrayList<>(2); dList3.add(new Document("latitude.error", new Document("$eq", Boolean.TRUE))); setTag(params, dList3); List dList4 = new ArrayList<>(2); dList4.add(new Document("longitude.error", new Document("$eq", Boolean.TRUE))); setTag(params, dList4); Document ipErrFilter = new Document("$and", dList1); Document macdzErrFilter = new Document("$and", dList2); Document latitudeErrFilter = new Document("$and", dList3); Document longitudeErrFilter = new Document("$and", dList4); List lists = Arrays.asList(ipErrFilter, macdzErrFilter, latitudeErrFilter, longitudeErrFilter); List rList = lists.stream().map(filter -> { // 构建聚合管道 List pipeline = Arrays.asList( new Document("$match", filter), // $group 去重 new Document("$group", new Document("_id", "$serialNumber.showValue")), new Document("$count", "uniqueDeviceIds") ); // 执行聚合查询并获取结果 AggregateIterable result = collection.aggregate(pipeline); Integer uniqueDeviceIdCount = 0; for (Document doc : result) { uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds"); break; // 不需要继续遍历,因为 $count 只会产生一个结果 } return uniqueDeviceIdCount + ""; }).collect(Collectors.toList()); Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper()) .select(CheckIndexVideo::getMonitorQualification) .eq(params.getDataType().equals(1), CheckIndexVideo::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexVideo::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexVideo::getMonitorQualification).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } rList.add(this.remove0(onlineRate)); HashMap map = new HashMap<>(); map.put("count", rList); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 视频:档案考核比 * * @param params * @return */ @Override public Result videoAssessmentFileRatio(DataCenterQuery params) { List likeFileds = Arrays.asList("ip.showValue", "name.showValue", "serialNumber.showValue"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); long total = mongoTemplate.count(query, MonitorQualifyResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, MonitorQualifyResult.class); // 统计数量 MongoDatabase database = mongoTemplate.getDb(); MongoCollection collection = database.getCollection("uy_monitor_qualify"); List dList1 = new ArrayList<>(2); dList1.add(new Document("ip.error", new Document("$eq", Boolean.TRUE))); setTag(params, dList1); List dList2 = new ArrayList<>(2); dList2.add(new Document("macdz.error", new Document("$eq", Boolean.TRUE))); setTag(params, dList2); List dList3 = new ArrayList<>(2); dList3.add(new Document("latitude.error", new Document("$eq", Boolean.TRUE))); setTag(params, dList3); List dList4 = new ArrayList<>(2); dList4.add(new Document("longitude.error", new Document("$eq", Boolean.TRUE))); setTag(params, dList4); Document ipErrFilter = new Document("$and", dList1); Document macdzErrFilter = new Document("$and", dList2); Document latitudeErrFilter = new Document("$and", dList3); Document longitudeErrFilter = new Document("$and", dList4); List lists = Arrays.asList(ipErrFilter, macdzErrFilter, latitudeErrFilter, longitudeErrFilter); List rList = lists.stream().map(filter -> { // 构建聚合管道 List pipeline = Arrays.asList( new Document("$match", filter), // $group 去重 new Document("$group", new Document("_id", "$serialNumber.showValue")), new Document("$count", "uniqueDeviceIds") ); // 执行聚合查询并获取结果 AggregateIterable result = collection.aggregate(pipeline); Integer uniqueDeviceIdCount = 0; for (Document doc : result) { uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds"); break; // 不需要继续遍历,因为 $count 只会产生一个结果 } return uniqueDeviceIdCount + ""; }).collect(Collectors.toList()); rList.add("0%"); HashMap map = new HashMap<>(); map.put("count", rList); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 视频:录像可用率 * * @param params * @return */ @Override public Result videoAvailabilityRate(DataCenterQuery params) { List likeFileds = Arrays.asList("deviceId", "deviceName"); Query query = MongoUtil.getQuery(params, "createTime", likeFileds, null); long total = mongoTemplate.count(query, RecordMetaDSumResult.class); MongoUtil.setPage(query, params, "createTime"); List resultList = mongoTemplate.find(query, RecordMetaDSumResult.class); // 统计数量 MongoDatabase database = mongoTemplate.getDb(); MongoCollection collection = database.getCollection("uy_record_meta_d_sum"); List status = Arrays.asList(1, 0, -1); List resultCount = status.stream().map(item -> { List dList = new ArrayList<>(2); dList.add(new Document("recordStatus", new Document("$eq", item))); setTag(params, dList); Document filter = new Document("$and", dList); // 构建聚合管道 List pipeline = Arrays.asList( new Document("$match", filter), // $group 去重 new Document("$group", new Document("_id", "$deviceId")), new Document("$count", "uniqueDeviceIds") ); // 执行聚合查询并获取结果 AggregateIterable result = collection.aggregate(pipeline); Integer uniqueDeviceIdCount = 0; for (Document doc : result) { uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds"); break; // 不需要继续遍历,因为 $count 只会产生一个结果 } return uniqueDeviceIdCount + ""; }).collect(Collectors.toList()); Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper()) .select(CheckIndexVideo::getVideoAvailable) .eq(params.getDataType().equals(1), CheckIndexVideo::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexVideo::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexVideo::getVideoAvailable).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } resultCount.add(this.remove0(onlineRate)); HashMap map = new HashMap<>(); map.put("count", resultCount); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 视频:部级录像可用率 * * @param params * @return */ @Override public Result deptVideoAvailabilityRate(DataCenterQuery params) { List likeFileds = Arrays.asList("deviceId", "deviceName"); Query query = MongoUtil.getQuery(params, "createTime", likeFileds, 1); long total = mongoTemplate.count(query, RecordMetaDSumResult.class); MongoUtil.setPage(query, params, "createTime"); List resultList = mongoTemplate.find(query, RecordMetaDSumResult.class); // 统计数量 MongoDatabase database = mongoTemplate.getDb(); MongoCollection collection = database.getCollection("uy_record_meta_d_sum"); List status = Arrays.asList(1, 0, -1); List resultCount = status.stream().map(item -> { List dList = new ArrayList<>(4); dList.add(new Document("deptTag", new Document("$eq", Boolean.TRUE))); dList.add(new Document("recordStatus", new Document("$eq", item))); setTag(params, dList); Document filter = new Document("$and", dList); // 构建聚合管道 List pipeline = Arrays.asList( new Document("$match", filter), // $group 去重 new Document("$group", new Document("_id", "$deviceId")), new Document("$count", "uniqueDeviceIds") ); // 执行聚合查询并获取结果 AggregateIterable result = collection.aggregate(pipeline); Integer uniqueDeviceIdCount = 0; for (Document doc : result) { uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds"); break; // 不需要继续遍历,因为 $count 只会产生一个结果 } return uniqueDeviceIdCount + ""; }).collect(Collectors.toList()); Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper()) .select(CheckIndexVideo::getMinistryVideoAvailable) .eq(params.getDataType().equals(1), CheckIndexVideo::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexVideo::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexVideo::getMinistryVideoAvailable).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } resultCount.add(this.remove0(onlineRate)); HashMap map = new HashMap<>(); map.put("count", resultCount); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 视频:重点点位录像可用率 * * @param params * @return */ @Override public Result videoImportantPointAvailabilityRate(DataCenterQuery params) { List likeFileds = Arrays.asList("deviceId", "deviceName"); Query query = MongoUtil.getQuery(params, "createTime", likeFileds, 3); long total = mongoTemplate.count(query, RecordMetaDSumResult.class); MongoUtil.setPage(query, params, "createTime"); List resultList = mongoTemplate.find(query, RecordMetaDSumResult.class); // 统计数量 MongoDatabase database = mongoTemplate.getDb(); MongoCollection collection = database.getCollection("uy_record_meta_d_sum"); List status = Arrays.asList(1, 0, -1); List resultCount = status.stream().map(item -> { List dList = new ArrayList<>(4); dList.add(new Document("importantTag", new Document("$eq", Boolean.TRUE))); dList.add(new Document("recordStatus", new Document("$eq", item))); setTag(params, dList); Document filter = new Document("$and", dList); // 构建聚合管道 List pipeline = Arrays.asList( new Document("$match", filter), // $group 去重 new Document("$group", new Document("_id", "$deviceId")), new Document("$count", "uniqueDeviceIds") ); // 执行聚合查询并获取结果 AggregateIterable result = collection.aggregate(pipeline); Integer uniqueDeviceIdCount = 0; for (Document doc : result) { uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds"); break; // 不需要继续遍历,因为 $count 只会产生一个结果 } return uniqueDeviceIdCount + ""; }).collect(Collectors.toList()); Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper()) .select(CheckIndexVideo::getKeyVideoAvailable) .eq(params.getDataType().equals(1), CheckIndexVideo::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexVideo::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexVideo::getKeyVideoAvailable).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } resultCount.add(this.remove0(onlineRate)); HashMap map = new HashMap<>(); map.put("count", resultCount); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 视频:标注正确率 * * @param params * @return */ @Override public Result videoLabelingAccuracy(DataCenterQuery params) { List likeFileds = Arrays.asList("deviceId", "deviceName"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); long total = mongoTemplate.count(query, RecordMetaDSumResult.class); List resultList = mongoTemplate.find(query, RecordMetaDSumResult.class); // 统计数 long nonNetwork = mongoTemplate.count(new Query().addCriteria(Criteria.where("LWSX").is("0")), RecordMetaDSumResult.class); long network = mongoTemplate.count(new Query().addCriteria(Criteria.where("LWSX").is("1")), RecordMetaDSumResult.class); long video = mongoTemplate.count(new Query().addCriteria(Criteria.where("SXJGNLX").regex(".*1.*")), RecordMetaDSumResult.class); long car = mongoTemplate.count(new Query().addCriteria(Criteria.where("SXJGNLX").regex(".*2.*")), RecordMetaDSumResult.class); long face = mongoTemplate.count(new Query().addCriteria(Criteria.where("SXJGNLX").regex(".*3.*")), RecordMetaDSumResult.class); HashMap map = new HashMap<>(); map.put("count", Arrays.asList(nonNetwork, network, video, car, face)); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 视频:重点点位标注正确率 * * @param params * @return */ @Override public Result videoImportantPointLabelingAccuracy(DataCenterQuery params) { List likeFileds = Arrays.asList("deviceNo", "osdName"); Query query = MongoUtil.getQuery(params, "checkTime", likeFileds, 3); long total = mongoTemplate.count(query, OsdCheckResult.class); MongoUtil.setPage(query, params, "checkTime"); List resultList = mongoTemplate.find(query, OsdCheckResult.class); // 统计数量 MongoDatabase database = mongoTemplate.getDb(); MongoCollection collection = database.getCollection("osd_check_result"); List dList1 = new ArrayList<>(2); dList1.add(new Document("importantTag", Boolean.TRUE)); dList1.add(new Document("osdNameCorrect", new Document("$eq", 1))); setTag(params, dList1); List dList2 = new ArrayList<>(2); dList2.add(new Document("importantTag", Boolean.TRUE)); dList2.add(new Document("osdNameCorrect", new Document("$eq", -1))); setTag(params, dList2); List dList3 = new ArrayList<>(2); dList3.add(new Document("importantTag", Boolean.TRUE)); dList3.add(new Document("osdTimeCorrect", new Document("$eq", 1))); setTag(params, dList3); List dList4 = new ArrayList<>(2); dList4.add(new Document("importantTag", Boolean.TRUE)); dList4.add(new Document("osdTimeCorrect", new Document("$eq", -1))); setTag(params, dList4); Document osdNameFilter = new Document("$and", dList1); Document osdNameErrFilter = new Document("$and", dList2); Document osdTimeFilter = new Document("$and", dList3); Document osdTimeErrFilter = new Document("$and", dList4); List lists = Arrays.asList(osdNameFilter, osdNameErrFilter, osdTimeFilter, osdTimeErrFilter); List rList = lists.stream().map(filter -> { // 构建聚合管道 List pipeline = Arrays.asList( new Document("$match", filter), // $group 去重 new Document("$group", new Document("_id", "$deviceNo")), new Document("$count", "uniqueDeviceIds") ); // 执行聚合查询并获取结果 AggregateIterable result = collection.aggregate(pipeline); Integer uniqueDeviceIdCount = 0; for (Document doc : result) { uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds"); break; // 不需要继续遍历,因为 $count 只会产生一个结果 } return uniqueDeviceIdCount + ""; }).collect(Collectors.toList()); Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper()) .select(CheckIndexVideo::getKeyAnnotationAccuracy) .eq(params.getDataType().equals(1), CheckIndexVideo::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexVideo::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexVideo::getKeyAnnotationAccuracy).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } rList.add(this.remove0(onlineRate)); HashMap map = new HashMap<>(); map.put("count", rList); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 视频:校时正确率 * * @param params * @return */ @Override public Result videoCheckTimeAccuracy(DataCenterQuery params) { List likeFileds = Arrays.asList("deviceId"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); long total = mongoTemplate.count(query, OneMachineFileResult.class); List resultList = mongoTemplate.find(query, OneMachineFileResult.class); // 统计数 long nonNetwork = mongoTemplate.count(new Query().addCriteria(Criteria.where("LWSX").is("0")), OneMachineFileResult.class); long network = mongoTemplate.count(new Query().addCriteria(Criteria.where("LWSX").is("1")), OneMachineFileResult.class); long video = mongoTemplate.count(new Query().addCriteria(Criteria.where("SXJGNLX").regex(".*1.*")), OneMachineFileResult.class); long car = mongoTemplate.count(new Query().addCriteria(Criteria.where("SXJGNLX").regex(".*2.*")), OneMachineFileResult.class); long face = mongoTemplate.count(new Query().addCriteria(Criteria.where("SXJGNLX").regex(".*3.*")), OneMachineFileResult.class); HashMap map = new HashMap<>(); map.put("count", Arrays.asList(nonNetwork, network, video, car, face)); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 视频:重点点位校时正确率 * * @param params * @return */ @Override public Result videoImportantPointCheckTimeAccuracy(DataCenterQuery params) { List likeFileds = Arrays.asList("deviceNo", "osdName"); Query query = MongoUtil.getQuery(params, "checkTime", likeFileds, 3); long total = mongoTemplate.count(query, OsdCheckResult.class); MongoUtil.setPage(query, params, "checkTime"); List resultList = mongoTemplate.find(query, OsdCheckResult.class); // 统计数量 MongoDatabase database = mongoTemplate.getDb(); MongoCollection collection = database.getCollection("osd_check_result"); List dList1 = new ArrayList<>(2); dList1.add(new Document("importantTag", Boolean.TRUE)); dList1.add(new Document("osdTimeCorrect", new Document("$eq", 1))); setTag(params, dList1); List dList2 = new ArrayList<>(2); dList2.add(new Document("importantTag", Boolean.TRUE)); dList2.add(new Document("osdTimeCorrect", new Document("$eq", -1))); setTag(params, dList2); Document osdTimeFilter = new Document("$and", dList1); Document osdTimeErrFilter = new Document("$and", dList2); List lists = Arrays.asList(osdTimeFilter, osdTimeErrFilter); List rList = lists.stream().map(filter -> { // 构建聚合管道 List pipeline = Arrays.asList( new Document("$match", filter), // $group 去重 new Document("$group", new Document("_id", "$deviceNo")), new Document("$count", "uniqueDeviceIds") ); // 执行聚合查询并获取结果 AggregateIterable result = collection.aggregate(pipeline); Integer uniqueDeviceIdCount = 0; for (Document doc : result) { uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds"); break; // 不需要继续遍历,因为 $count 只会产生一个结果 } return uniqueDeviceIdCount + ""; }).collect(Collectors.toList()); Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexVideoService.getBaseMapper()) .select(CheckIndexVideo::getKeyTimingAccuracy) .eq(params.getDataType().equals(1), CheckIndexVideo::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexVideo::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexVideo::getKeyTimingAccuracy).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } rList.add(this.remove0(onlineRate)); HashMap map = new HashMap<>(); map.put("count", rList); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 车辆:视图库对接稳定性 * * @param params * @return */ @Override public Result vehicleViewDockStable(DataCenterQuery params) { List likeFileds = Arrays.asList("externalIndexCode", "deviceName"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); long total = mongoTemplate.count(query, SnapshotDataMonitorResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, SnapshotDataMonitorResult.class); // 统计数量 MongoDatabase database = mongoTemplate.getDb(); MongoCollection collection = database.getCollection("hk_snapshot_data_monitor"); List dList1 = new ArrayList<>(2); dList1.add(new Document("importantTag", Boolean.TRUE)); dList1.add(new Document("resultType", new Document("$eq", 1))); setTag(params, dList1); List dList2 = new ArrayList<>(2); dList2.add(new Document("importantTag", Boolean.TRUE)); dList2.add(new Document("resultType", new Document("$eq", 2))); setTag(params, dList2); List dList3 = new ArrayList<>(2); dList3.add(new Document("importantTag", Boolean.TRUE)); dList3.add(new Document("resultType", new Document("$eq", 3))); setTag(params, dList3); List dList4 = new ArrayList<>(2); dList4.add(new Document("importantTag", Boolean.TRUE)); dList4.add(new Document("resultType", new Document("$eq", 4))); setTag(params, dList4); Document normalFilter = new Document("$and", dList1); Document noDataFilter = new Document("$and", dList2); Document trFilter = new Document("$and", dList3); Document littleFilter = new Document("$and", dList4); List lists = Arrays.asList(normalFilter, noDataFilter, trFilter, littleFilter); List rList = lists.stream().map(filter -> { // 构建聚合管道 List pipeline = Arrays.asList( new Document("$match", filter), // $group 去重 new Document("$group", new Document("_id", "$externalIndexCode")), new Document("$count", "uniqueDeviceIds") ); // 执行聚合查询并获取结果 AggregateIterable result = collection.aggregate(pipeline); Integer uniqueDeviceIdCount = 0; for (Document doc : result) { uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds"); break; // 不需要继续遍历,因为 $count 只会产生一个结果 } return uniqueDeviceIdCount + ""; }).collect(Collectors.toList()); Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexCarService.getBaseMapper()) .select(CheckIndexCar::getViewConnectStability) .eq(params.getDataType().equals(1), CheckIndexCar::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexCar::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexCar::getViewConnectStability).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } rList.add(this.remove0(onlineRate)); HashMap map = new HashMap<>(); map.put("count", rList); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 车辆:点位在线率 * * @param params * @return */ @Override public Result vehiclePointOnlineRate(DataCenterQuery params) { List likeFileds = Arrays.asList("name", "no", "ip"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); //分页数量 long total = mongoTemplate.count(query, TMonitorResult.class); MongoUtil.setPage(query, params, TIME_FIELD); //系统ping的结果 List resultList = mongoTemplate.find(query, TMonitorResult.class); params.setDeptTag(-1); params.setDeviceType(2); // 统计设备数量 Integer distinctCount = pointMapper.distinctCount(params); resultList.forEach(item -> { if (null != item.getPingOnline() && item.getPingOnline()) { item.setPingOnlineStr("在线"); } else { item.setPingOnlineStr("离线"); } if (1 == item.getOnline()) { item.setOnlineStr("在线"); } else if (-1 == item.getOnline()) { item.setOnlineStr("离线"); } else { item.setOnlineStr("未知"); } }); List videoList = new LambdaQueryChainWrapper<>(checkIndexCarService.getBaseMapper()) .select(CheckIndexCar::getSiteOnline) .eq(params.getDataType().equals(1), CheckIndexCar::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexCar::getCreateTime, DateUtils.getDayStart(params.getStartTime()), DateUtils.getDayEnd(params.getEndTime())) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexCar::getSiteOnline).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } HashMap map = new HashMap<>(); map.put("count", Arrays.asList(distinctCount + "", this.remove0(onlineRate))); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 车辆:互联网卡口设备目录一致性 * * @param params * @return */ @Override public Result vehicleNetDeviceDirectoryConsistency(DataCenterQuery params) { List likeFileds = Arrays.asList("ip.showValue", "name.showValue", "serialNumber.showValue"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); long total = mongoTemplate.count(query, MonitorQualifyResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, MonitorQualifyResult.class); // 统计数量 MongoDatabase database = mongoTemplate.getDb(); MongoCollection collection = database.getCollection("uy_monitor_qualify"); List dList1 = new ArrayList<>(2); dList1.add(new Document("ip.error", new Document("$eq", Boolean.TRUE))); setTag(params, dList1); List dList2 = new ArrayList<>(2); dList2.add(new Document("macdz.error", new Document("$eq", Boolean.TRUE))); setTag(params, dList2); List dList3 = new ArrayList<>(2); dList3.add(new Document("latitude.error", new Document("$eq", Boolean.TRUE))); setTag(params, dList3); List dList4 = new ArrayList<>(2); dList4.add(new Document("longitude.error", new Document("$eq", Boolean.TRUE))); setTag(params, dList4); Document ipErrFilter = new Document("$and", dList1); Document macdzErrFilter = new Document("$and", dList2); Document latitudeErrFilter = new Document("$and", dList3); Document longitudeErrFilter = new Document("$and", dList4); List lists = Arrays.asList(ipErrFilter, macdzErrFilter, latitudeErrFilter, longitudeErrFilter); List rList = lists.stream().map(filter -> { // 构建聚合管道 List pipeline = Arrays.asList( new Document("$match", filter), // $group 去重 new Document("$group", new Document("_id", "$serialNumber.showValue")), new Document("$count", "uniqueDeviceIds") ); // 执行聚合查询并获取结果 AggregateIterable result = collection.aggregate(pipeline); Integer uniqueDeviceIdCount = 0; for (Document doc : result) { uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds"); break; // 不需要继续遍历,因为 $count 只会产生一个结果 } return uniqueDeviceIdCount + ""; }).collect(Collectors.toList()); Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexCarService.getBaseMapper()) .select(CheckIndexCar::getDeviceDirectoryConsistent) .eq(params.getDataType().equals(1), CheckIndexCar::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexCar::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexCar::getDeviceDirectoryConsistent).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } rList.add(this.remove0(onlineRate)); HashMap map = new HashMap<>(); map.put("count", rList); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 车辆:车辆卡口信息采集准确率 * * @param params * @return */ @Override public Result vehicleCollectionConsistency(DataCenterQuery params) { List likeFileds = Arrays.asList("externalIndexCode", "crossName"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); long total = mongoTemplate.count(query, CrossDetailResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, CrossDetailResult.class); // 统计数量 MongoDatabase database = mongoTemplate.getDb(); MongoCollection collection = database.getCollection("hk_cross_detail"); List dList1 = new ArrayList<>(2); dList1.add(new Document("lalType", new Document("$eq", 1))); setTag(params, dList1); List dList2 = new ArrayList<>(2); dList2.add(new Document("lalType", new Document("$eq", 2))); setTag(params, dList2); List dList3 = new ArrayList<>(2); dList3.add(new Document("lalType", new Document("$eq", 3))); setTag(params, dList3); List dList4 = new ArrayList<>(2); dList4.add(new Document("lalType", new Document("$eq", 4))); setTag(params, dList4); Document ipErrFilter = new Document("$and", dList1); Document macdzErrFilter = new Document("$and", dList2); Document latitudeErrFilter = new Document("$and", dList3); Document longitudeErrFilter = new Document("$and", dList4); List lists = Arrays.asList(ipErrFilter, macdzErrFilter, latitudeErrFilter, longitudeErrFilter); List rList = lists.stream().map(filter -> { // 构建聚合管道 List pipeline = Arrays.asList( new Document("$match", filter), // $group 去重 new Document("$group", new Document("_id", "$externalIndexCode")), new Document("$count", "uniqueDeviceIds") ); // 执行聚合查询并获取结果 AggregateIterable result = collection.aggregate(pipeline); Integer uniqueDeviceIdCount = 0; for (Document doc : result) { uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds"); break; // 不需要继续遍历,因为 $count 只会产生一个结果 } return uniqueDeviceIdCount + ""; }).collect(Collectors.toList()); Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexCarService.getBaseMapper()) .select(CheckIndexCar::getVehicleInformationCollectionAccuracy) .eq(params.getDataType().equals(1), CheckIndexCar::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexCar::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexCar::getVehicleInformationCollectionAccuracy).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } rList.add(this.remove0(onlineRate)); HashMap map = new HashMap<>(); map.put("count", rList); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 车辆:车辆卡口设备抓拍数据完整性 * * @param params * @return */ @Override public Result vehicleCollectionDataIntegrity(DataCenterQuery params) { List likeFileds = Arrays.asList("externalIndexCode", "deviceName"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); long total = mongoTemplate.count(query, DataIntegrityMonitoringResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, DataIntegrityMonitoringResult.class); // 统计数量 MongoDatabase database = mongoTemplate.getDb(); MongoCollection collection = database.getCollection("hk_data_integrity_monitoring"); Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexCarService.getBaseMapper()) .select(CheckIndexCar::getVehicleCaptureIntegrity) .eq(params.getDataType().equals(1), CheckIndexCar::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexCar::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexCar::getVehicleCaptureIntegrity).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } HashMap map = new HashMap<>(); map.put("count", Arrays.asList(this.remove0(onlineRate))); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 车辆:车辆卡口设备抓拍数据准确性 * * @param params * @return */ @Override public Result vehicleCollectionDataCaptured(DataCenterQuery params) { List likeFileds = Arrays.asList("externalIndexCode", "deviceName"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); long total = mongoTemplate.count(query, AttrRecognitionMonitorResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, AttrRecognitionMonitorResult.class); Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexCarService.getBaseMapper()) .select(CheckIndexCar::getVehicleCaptureAccuracy) .eq(params.getDataType().equals(1), CheckIndexCar::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexCar::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexCar::getVehicleCaptureAccuracy).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } HashMap map = new HashMap<>(); map.put("count", Arrays.asList(this.remove0(onlineRate))); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 车辆:车辆卡口设备时钟准确性 * * @param params * @return */ @Override public Result vehicleClockAccuracy(DataCenterQuery params) { List likeFileds = Arrays.asList("externalIndexCode", "deviceName"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); long total = mongoTemplate.count(query, VehicleDeviceInspectionResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, VehicleDeviceInspectionResult.class); // 统计数量 MongoDatabase database = mongoTemplate.getDb(); MongoCollection collection = database.getCollection("hk_vehicle_device_inspection"); List dList1 = new ArrayList<>(2); dList1.add(new Document("snapResult", new Document("$eq", 1))); setTag(params, dList1); List dList2 = new ArrayList<>(2); dList2.add(new Document("snapResult", new Document("$eq", 2))); setTag(params, dList2); List dList3 = new ArrayList<>(2); dList3.add(new Document("snapResult", new Document("$eq", 4))); setTag(params, dList3); Document ipErrFilter = new Document("$and", dList1); Document macdzErrFilter = new Document("$and", dList2); Document longitudeErrFilter = new Document("$and", dList3); List lists = Arrays.asList(ipErrFilter, macdzErrFilter, longitudeErrFilter); List rList = lists.stream().map(filter -> { // 构建聚合管道 List pipeline = Arrays.asList( new Document("$match", filter), // $group 去重 new Document("$group", new Document("_id", "$externalIndexCode")), new Document("$count", "uniqueDeviceIds") ); // 执行聚合查询并获取结果 AggregateIterable result = collection.aggregate(pipeline); Integer uniqueDeviceIdCount = 0; for (Document doc : result) { uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds"); break; // 不需要继续遍历,因为 $count 只会产生一个结果 } return uniqueDeviceIdCount + ""; }).collect(Collectors.toList()); Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexCarService.getBaseMapper()) .select(CheckIndexCar::getVehicleTimingAccuracy) .eq(params.getDataType().equals(1), CheckIndexCar::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexCar::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexCar::getVehicleTimingAccuracy).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } rList.add(this.remove0(onlineRate)); HashMap map = new HashMap<>(); map.put("count", rList); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 车辆:车辆卡口设备抓拍数据上传及时性 * * @param params * @return */ @Override public Result vehicleTimelyUploadAccuracy(DataCenterQuery params) { List likeFileds = Arrays.asList("externalIndexCode", "deviceName"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); long total = mongoTemplate.count(query, SnapshotDelayMonitorResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, SnapshotDelayMonitorResult.class); // 统计数 Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexCarService.getBaseMapper()) .select(CheckIndexCar::getVehicleUploadTimeliness) .eq(params.getDataType().equals(1), CheckIndexCar::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexCar::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexCar::getVehicleUploadTimeliness).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } HashMap map = new HashMap<>(); map.put("count", Arrays.asList(this.remove0(onlineRate))); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 车辆:车辆卡口设备url可用性 * * @param params * @return */ @Override public Result vehicleUrlAccuracy(DataCenterQuery params) { List likeFileds = Arrays.asList("externalIndexCode", "deviceName"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); long total = mongoTemplate.count(query, PicAccessResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, PicAccessResult.class); // 统计数 Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexCarService.getBaseMapper()) .select(CheckIndexCar::getVehicleUrlAvailability) .eq(params.getDataType().equals(1), CheckIndexCar::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexCar::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexCar::getVehicleUrlAvailability).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } HashMap map = new HashMap<>(); map.put("count", Arrays.asList(this.remove0(onlineRate))); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 车辆:车辆卡口设备抓拍数据大图可用性 * * @param params * @return */ @Override public Result vehicleBigImgAccuracy(DataCenterQuery params) { List likeFileds = Arrays.asList("externalIndexCode", "deviceName"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); long total = mongoTemplate.count(query, VehicleDeviceSamplingResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, VehicleDeviceSamplingResult.class); // 统计数 Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexCarService.getBaseMapper()) .select(CheckIndexCar::getVehiclePictureAvailability) .eq(params.getDataType().equals(1), CheckIndexCar::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexCar::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexCar::getVehiclePictureAvailability).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } HashMap map = new HashMap<>(); map.put("count", Arrays.asList(this.remove0(onlineRate))); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 人脸:视图库对接稳定性 * * @param params * @return */ @Override public Result faceViewDockStable(DataCenterQuery params) { List likeFileds = Arrays.asList("externalIndexCode", "deviceName"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); long total = mongoTemplate.count(query, SnapshotDataMonitorResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, SnapshotDataMonitorResult.class); // 统计数量 MongoDatabase database = mongoTemplate.getDb(); MongoCollection collection = database.getCollection("hk_snapshot_data_monitor"); List dList1 = new ArrayList<>(2); dList1.add(new Document("resultType", new Document("$eq", 1))); setTag(params, dList1); List dList2 = new ArrayList<>(2); dList2.add(new Document("resultType", new Document("$eq", 2))); setTag(params, dList2); List dList3 = new ArrayList<>(2); dList3.add(new Document("resultType", new Document("$eq", 3))); setTag(params, dList3); List dList4 = new ArrayList<>(2); dList4.add(new Document("resultType", new Document("$eq", 4))); setTag(params, dList4); Document normalFilter = new Document("$and", dList1); Document noDataFilter = new Document("$and", dList2); Document trFilter = new Document("$and", dList3); Document littleFilter = new Document("$and", dList4); List lists = Arrays.asList(normalFilter, noDataFilter, trFilter, littleFilter); List rList = lists.stream().map(filter -> { // 构建聚合管道 List pipeline = Arrays.asList( new Document("$match", filter), // $group 去重 new Document("$group", new Document("_id", "$externalIndexCode")), new Document("$count", "uniqueDeviceIds") ); // 执行聚合查询并获取结果 AggregateIterable result = collection.aggregate(pipeline); Integer uniqueDeviceIdCount = 0; for (Document doc : result) { uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds"); break; // 不需要继续遍历,因为 $count 只会产生一个结果 } return uniqueDeviceIdCount + ""; }).collect(Collectors.toList()); Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexFaceService.getBaseMapper()) .select(CheckIndexFace::getViewConnectStability) .eq(params.getDataType().equals(1), CheckIndexFace::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexFace::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexFace::getViewConnectStability).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } rList.add(this.remove0(onlineRate)); HashMap map = new HashMap<>(); map.put("count", rList); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 人脸:点位在线率 * * @param params * @return */ @Override public Result facePointOnlineRate(DataCenterQuery params) { List likeFileds = Arrays.asList("name", "no", "ip"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); //分页数量 long total = mongoTemplate.count(query, TMonitorResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, TMonitorResult.class); resultList.forEach(item -> { if (null != item.getPingOnline() && item.getPingOnline()) { item.setOnlineStr("在线"); } else { item.setOnlineStr("离线"); } if (1 == item.getOnline()) { item.setOnlineStr("在线"); } else if (-1 == item.getOnline()) { item.setOnlineStr("离线"); } else { item.setOnlineStr("未知"); } }); params.setDeptTag(-1); params.setDeviceType(3); // 统计设备数量 Integer distinctCount = pointMapper.distinctCount(params); Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexFaceService.getBaseMapper()) .select(CheckIndexFace::getSiteOnline) .eq(params.getDataType().equals(1), CheckIndexFace::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexFace::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexFace::getSiteOnline).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } List rList = new ArrayList<>(2); rList.add(distinctCount + ""); rList.add(this.remove0(onlineRate)); HashMap map = new HashMap<>(); map.put("count", rList); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 人脸:目录一致率 * * @param params * @return */ @Override public Result faceDirectoryConsistency(DataCenterQuery params) { List likeFileds = Arrays.asList("serialNumber.showValue", "ip.showValue", "name.showValue"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); long total = mongoTemplate.count(query, MonitorQualifyResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, MonitorQualifyResult.class); // 统计数量 MongoDatabase database = mongoTemplate.getDb(); MongoCollection collection = database.getCollection("uy_monitor_qualify"); List dList1 = new ArrayList<>(2); dList1.add(new Document("ip.error", new Document("$eq", Boolean.TRUE))); setTag(params, dList1); List dList2 = new ArrayList<>(2); dList2.add(new Document("macdz.error", new Document("$eq", Boolean.TRUE))); setTag(params, dList2); List dList3 = new ArrayList<>(2); dList3.add(new Document("latitude.error", new Document("$eq", Boolean.TRUE))); setTag(params, dList3); List dList4 = new ArrayList<>(2); dList4.add(new Document("longitude.error", new Document("$eq", Boolean.TRUE))); setTag(params, dList4); Document ipErrFilter = new Document("$and", dList1); Document macdzErrFilter = new Document("$and", dList2); Document latitudeErrFilter = new Document("$and", dList3); Document longitudeErrFilter = new Document("$and", dList4); List lists = Arrays.asList(ipErrFilter, macdzErrFilter, latitudeErrFilter, longitudeErrFilter); List rList = lists.stream().map(filter -> { // 构建聚合管道 List pipeline = Arrays.asList( new Document("$match", filter), // $group 去重 new Document("$group", new Document("_id", "$serialNumber.showValue")), new Document("$count", "uniqueDeviceIds") ); // 执行聚合查询并获取结果 AggregateIterable result = collection.aggregate(pipeline); Integer uniqueDeviceIdCount = 0; for (Document doc : result) { uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds"); break; // 不需要继续遍历,因为 $count 只会产生一个结果 } return uniqueDeviceIdCount + ""; }).collect(Collectors.toList()); Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexFaceService.getBaseMapper()) .select(CheckIndexFace::getDeviceDirectoryConsistent) .eq(params.getDataType().equals(1), CheckIndexFace::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexFace::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexFace::getDeviceDirectoryConsistent).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } rList.add(this.remove0(onlineRate)); HashMap map = new HashMap<>(); map.put("count", rList); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 人脸:人脸卡口信息采集准确率 * * @param params * @return */ @Override public Result faceCollectionConsistency(DataCenterQuery params) { List likeFileds = Arrays.asList("externalIndexCode", "crossName"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); long total = mongoTemplate.count(query, CrossDetailResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, CrossDetailResult.class); // 统计数量 MongoDatabase database = mongoTemplate.getDb(); MongoCollection collection = database.getCollection("hk_cross_detail"); List dList1 = new ArrayList<>(2); dList1.add(new Document("lalType", new Document("$eq", 1))); setTag(params, dList1); List dList2 = new ArrayList<>(2); dList2.add(new Document("lalType", new Document("$eq", 2))); setTag(params, dList2); List dList3 = new ArrayList<>(2); dList3.add(new Document("lalType", new Document("$eq", 3))); setTag(params, dList3); List dList4 = new ArrayList<>(2); dList4.add(new Document("lalType", new Document("$eq", 4))); setTag(params, dList4); Document ipErrFilter = new Document("$and", dList1); Document macdzErrFilter = new Document("$and", dList2); Document latitudeErrFilter = new Document("$and", dList3); Document longitudeErrFilter = new Document("$and", dList4); List lists = Arrays.asList(ipErrFilter, macdzErrFilter, latitudeErrFilter, longitudeErrFilter); List rList = lists.stream().map(filter -> { // 构建聚合管道 List pipeline = Arrays.asList( new Document("$match", filter), // $group 去重 new Document("$group", new Document("_id", "$externalIndexCode")), new Document("$count", "uniqueDeviceIds") ); // 执行聚合查询并获取结果 AggregateIterable result = collection.aggregate(pipeline); Integer uniqueDeviceIdCount = 0; for (Document doc : result) { uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds"); break; // 不需要继续遍历,因为 $count 只会产生一个结果 } return uniqueDeviceIdCount + ""; }).collect(Collectors.toList()); Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexFaceService.getBaseMapper()) .select(CheckIndexFace::getFaceInformationCollectionAccuracy) .eq(params.getDataType().equals(1), CheckIndexFace::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexFace::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexFace::getFaceInformationCollectionAccuracy).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } rList.add(this.remove0(onlineRate)); HashMap map = new HashMap<>(); map.put("count", rList); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 人脸:设备抓拍图片合格性 * * @param params * @return */ @Override public Result faceImgQualification(DataCenterQuery params) { List likeFileds = Arrays.asList("externalIndexCode", "cameraName"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); long total = mongoTemplate.count(query, MonitoringDetailResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, MonitoringDetailResult.class); // 统计数量 MongoDatabase database = mongoTemplate.getDb(); MongoCollection collection = database.getCollection("hk_monitoring_detail"); List dList1 = new ArrayList<>(2); dList1.add(new Document("lalType", new Document("$eq", 1))); setTag(params, dList1); List dList2 = new ArrayList<>(2); dList2.add(new Document("lalType", new Document("$eq", 2))); setTag(params, dList2); List dList3 = new ArrayList<>(2); dList3.add(new Document("lalType", new Document("$eq", 3))); setTag(params, dList3); List dList4 = new ArrayList<>(2); dList4.add(new Document("lalType", new Document("$eq", 4))); setTag(params, dList4); Document ipErrFilter = new Document("$and", dList1); Document macdzErrFilter = new Document("$and", dList2); Document latitudeErrFilter = new Document("$and", dList3); Document longitudeErrFilter = new Document("$and", dList4); List lists = Arrays.asList(ipErrFilter, macdzErrFilter, latitudeErrFilter, longitudeErrFilter); List rList = lists.stream().map(filter -> { // 构建聚合管道 List pipeline = Arrays.asList( new Document("$match", filter), // $group 去重 new Document("$group", new Document("_id", "$externalIndexCode")), new Document("$count", "uniqueDeviceIds") ); // 执行聚合查询并获取结果 AggregateIterable result = collection.aggregate(pipeline); Integer uniqueDeviceIdCount = 0; for (Document doc : result) { uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds"); break; // 不需要继续遍历,因为 $count 只会产生一个结果 } return uniqueDeviceIdCount + ""; }).collect(Collectors.toList()); Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexFaceService.getBaseMapper()) .select(CheckIndexFace::getFacePictureQualification) .eq(params.getDataType().equals(1), CheckIndexFace::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexFace::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexFace::getFacePictureQualification).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } rList.add(this.remove0(onlineRate)); HashMap map = new HashMap<>(); map.put("count", rList); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 人脸:设备抓拍图片时钟准确性 * * @param params * @return */ @Override public Result faceCapturesImagesAccuracy(DataCenterQuery params) { List likeFileds = Arrays.asList("externalIndexCode", "deviceName"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); long total = mongoTemplate.count(query, FaceDeviceInspectionResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, FaceDeviceInspectionResult.class); // 统计数量 MongoDatabase database = mongoTemplate.getDb(); MongoCollection collection = database.getCollection("hk_vehicle_device_inspection"); List dList1 = new ArrayList<>(2); dList1.add(new Document("snapResult", new Document("$eq", 1))); setTag(params, dList1); List dList2 = new ArrayList<>(2); dList2.add(new Document("snapResult", new Document("$eq", 2))); setTag(params, dList2); List dList3 = new ArrayList<>(2); dList3.add(new Document("snapResult", new Document("$eq", 4))); setTag(params, dList3); Document ipErrFilter = new Document("$and", dList1); Document macdzErrFilter = new Document("$and", dList2); Document longitudeErrFilter = new Document("$and", dList3); List lists = Arrays.asList(ipErrFilter, macdzErrFilter, longitudeErrFilter); List rList = lists.stream().map(filter -> { // 构建聚合管道 List pipeline = Arrays.asList( new Document("$match", filter), // $group 去重 new Document("$group", new Document("_id", "$externalIndexCode")), new Document("$count", "uniqueDeviceIds") ); // 执行聚合查询并获取结果 AggregateIterable result = collection.aggregate(pipeline); Integer uniqueDeviceIdCount = 0; for (Document doc : result) { uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds"); break; // 不需要继续遍历,因为 $count 只会产生一个结果 } return uniqueDeviceIdCount + ""; }).collect(Collectors.toList()); Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexFaceService.getBaseMapper()) .select(CheckIndexFace::getFaceTimingAccuracy) .eq(params.getDataType().equals(1), CheckIndexFace::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexFace::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexFace::getFaceTimingAccuracy).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } rList.add(this.remove0(onlineRate)); HashMap map = new HashMap<>(); map.put("count", rList); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 人脸:抓拍人脸数据上传及时性 * * @param params * @return */ @Override public Result faceTimelyUpload(DataCenterQuery params) { List likeFileds = Arrays.asList("externalIndexCode", "deviceName"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); long total = mongoTemplate.count(query, FaceDeviceInspectionResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, FaceDeviceInspectionResult.class); // 统计数量 MongoDatabase database = mongoTemplate.getDb(); MongoCollection collection = database.getCollection("hk_vehicle_device_inspection"); List dList1 = new ArrayList<>(2); dList1.add(new Document("snapResult", new Document("$eq", 1))); setTag(params, dList1); List dList2 = new ArrayList<>(2); dList2.add(new Document("snapResult", new Document("$eq", 2))); setTag(params, dList2); List dList3 = new ArrayList<>(2); dList3.add(new Document("snapResult", new Document("$eq", 4))); setTag(params, dList3); Document ipErrFilter = new Document("$and", dList1); Document macdzErrFilter = new Document("$and", dList2); Document longitudeErrFilter = new Document("$and", dList3); List lists = Arrays.asList(ipErrFilter, macdzErrFilter, longitudeErrFilter); List rList = lists.stream().map(filter -> { // 构建聚合管道 List pipeline = Arrays.asList( new Document("$match", filter), // $group 去重 new Document("$group", new Document("_id", "$externalIndexCode")), new Document("$count", "uniqueDeviceIds") ); // 执行聚合查询并获取结果 AggregateIterable result = collection.aggregate(pipeline); Integer uniqueDeviceIdCount = 0; for (Document doc : result) { uniqueDeviceIdCount = doc.getInteger("uniqueDeviceIds"); break; // 不需要继续遍历,因为 $count 只会产生一个结果 } return uniqueDeviceIdCount + ""; }).collect(Collectors.toList()); Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexFaceService.getBaseMapper()) .select(CheckIndexFace::getFaceUploadTimeliness) .eq(params.getDataType().equals(1), CheckIndexFace::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexFace::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexFace::getFaceUploadTimeliness).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } rList.add(this.remove0(onlineRate)); HashMap map = new HashMap<>(); map.put("count", rList); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 人脸:人脸卡口设备抓拍数据大图可用性 * * @param params * @return */ @Override public Result faceAvailabilityOfLargeImg(DataCenterQuery params) { List likeFileds = Arrays.asList("externalIndexCode", "deviceName"); Query query = MongoUtil.getQuery(params, TIME_FIELD, likeFileds, null); long total = mongoTemplate.count(query, FaceDeviceSamplingResult.class); MongoUtil.setPage(query, params, TIME_FIELD); List resultList = mongoTemplate.find(query, FaceDeviceSamplingResult.class); // 统计数 Date now = new Date(); List videoList = new LambdaQueryChainWrapper<>(checkIndexFaceService.getBaseMapper()) .select(CheckIndexFace::getFacePictureAvailability) .eq(params.getDataType().equals(1), CheckIndexFace::getExamineTag, CheckConstants.Examine_Tag_Province) .between(CheckIndexFace::getCreateTime, DateUtils.getDayStart(now), DateUtils.getDayEnd(now)) .list(); BigDecimal onlineRate = BigDecimal.ZERO; if (CollectionUtils.isNotEmpty(videoList)) { BigDecimal sum = videoList.stream().map(CheckIndexFace::getFacePictureAvailability).reduce(BigDecimal.ZERO, BigDecimal::add); BigDecimal count = BigDecimal.valueOf(videoList.size()); onlineRate = sum.divide(count, 4, RoundingMode.HALF_UP).multiply(BigDecimal.valueOf(100)); } HashMap map = new HashMap<>(); map.put("count", Arrays.asList(this.remove0(onlineRate))); map.put("list", resultList); return Result.ok().data(map).total(total); } /** * 视频:视频图像资源安全管理 * * @param query * @return */ @Override public Result videoImageResourceSecurity(DataCenterQuery query) { Page page = PageHelper.startPage(query.getPageNum(), query.getPageSize()); securityDetailMapper.selectImageResourceSecurityDetailList(query); // 统计数 HashMap map = new HashMap<>(); map.put("count", CollectionUtils.EMPTY_COLLECTION); map.put("list", page); return Result.ok().data(map).total(page.getTotal()); } /** * 删除尾部的0 * * @param rate * @return */ private String remove0(BigDecimal rate) { DF.setDecimalSeparatorAlwaysShown(false); return DF.format(rate) + "%"; } /** * 设置标签搜索条件 * * @param params * @param dList */ private void setTag(DataCenterQuery params, List dList) { if (params.getDataType().equals(1)) { dList.add(new Document("provinceTag", new Document("$eq", Boolean.TRUE))); } else if (params.getDataType().equals(2)) { dList.add(new Document("deptTag", new Document("$eq", Boolean.TRUE))); } } }