package com.ycl.calculate; import com.ycl.platform.domain.entity.CheckIndexFace; import com.ycl.platform.domain.result.HK.FaceDeviceSamplingResult; import com.ycl.platform.domain.vo.TMonitorVO; import com.ycl.platform.mapper.CheckIndexFaceMapper; import com.ycl.platform.mapper.TMonitorMapper; import com.ycl.platform.service.ICheckIndexFaceService; import constant.ApiConstants; import lombok.extern.slf4j.Slf4j; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; import org.springframework.util.CollectionUtils; import utils.DateUtils; import java.math.BigDecimal; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.function.Function; import java.util.stream.Collectors; /** * 计算人脸抓拍图片合格性、大图可用性 * 人脸数据抽检接口 * 获取分省厅、区域的map k为deptId或者Province_deptId * 更新或新增 */ @Component @Slf4j public class FaceDeviceSampleCalculation extends IndexCalculationServe implements CalculationStrategy { @Autowired private CheckIndexFaceMapper checkIndexFaceMapper; @Autowired private ICheckIndexFaceService checkIndexFaceService; //区域车辆抽检指标 protected static class AreaStats { int totalSites = 0; //图片合格的点位数 int picQualifySites = 0; //图片可用的点位数 int picUsabilitySites = 0; //图片总点位数 int picSites = 0; } @Override public void calculate(List list) { //获取分区域的指标数量 Map areaStatsMap = getAreaStatsMap(list,Boolean.FALSE); if (areaStatsMap == null) return; // 查询是否index表已经存在今日数据 List checkIndexFaceList = checkIndexFaceMapper.selectToday(DateUtils.getDate()); List checkIndexFaces = new ArrayList<>(); areaStatsMap.forEach((deptId, stats) -> { if (stats.totalSites > 0) { CheckIndexFace checkIndexFace = createOrUpdateCheckIndexFace(deptId, stats, checkIndexFaceList); if (checkIndexFace != null) { checkIndexFaces.add(checkIndexFace); } } }); checkIndexFaceService.saveOrUpdateBatch(checkIndexFaces); } /** * 累计抓拍数据准确设备数和设备总数 */ @Override public void updateAreaStats(Map areaStatsMap, String key, FaceDeviceSamplingResult result) { //返回对象的引用,如果不存在会放入新的key,value AreaStats stats = areaStatsMap.computeIfAbsent(key, k -> new AreaStats()); FaceDeviceSamplingResult.BigUsefulness bigUseful = result.getBigUseful(); FaceDeviceSamplingResult.FaceEligibility faceElig = result.getFaceEligibility(); stats.totalSites++; //90%及以上数据合格则此人脸设备被视为图片合格 if (faceElig != null) { if (faceElig.getFaceEligPercent() >= 0.9) { stats.picQualifySites++; } } //只计算抽检的 if(bigUseful.getSampleCount() !=0){ stats.picSites++; //大图可用率大于90%视为合格, if (bigUseful.getBigUsefulPercent() >= 0.9) { stats.picUsabilitySites++; } } } /** * 人脸图片合格率、大图可用性 */ private CheckIndexFace createOrUpdateCheckIndexFace(String key, AreaStats stats, List checkIndexFaceList) { CheckIndexFace checkIndexFace = getCheckIndex(key, checkIndexFaceList, CheckIndexFace.class); if (checkIndexFace == null) { return null; } //调用图片合格率计算方法 Map qualifyParam = new HashMap<>(); qualifyParam.put("totalSites", stats.totalSites); qualifyParam.put("picQualifySites", stats.picQualifySites); BigDecimal dataQualify = dataQualify(qualifyParam); checkIndexFace.setFacePictureQualification(dataQualify); //调用大图可用性计算方法 Map usabilityParam = new HashMap<>(); usabilityParam.put("totalSites", stats.picSites); usabilityParam.put("picUsabilitySites", stats.picUsabilitySites); BigDecimal picUsability = picUsability(usabilityParam); checkIndexFace.setFacePictureAvailability(picUsability); return checkIndexFace; } }